Evaluasi Faktor-Faktor Penerimaan Quick Response Indonesia Standard (Qris) di Masyarakat Jabodetabek dengan Modifikasi Utaut 2
Abstract
The digital revolution has become a major driver of global economic change, accelerating the transformation of various sectors, including payment systems. In Indonesia, one of the important innovations that has emerged is the Quick Response Indonesia Standard (QRIS). This research is expected to provide in-depth insight into the factors that influence QRIS acceptance in the Jabodetabek area. This research is quantitative research. Data was obtained by distributing questionnaires via Google Form to 123 respondents. The data collected was then processed using SEM-PLS analysis. The results of this research explain that performance expectancy has a positive and significant influence on intention to use QRIS. On the other hand, effort expectancy and trust are not significant in influencing intention to use. Social influence and facilitating conditions are negatively and significantly related to intention to use, hedonic motivation and perceived security do not significantly influence intention to use QRIS. Price value shows a positive and significant influence, Habit has a positive and significant influence. Lastly, perceived risk has a negative and significant relationship, where perceived risk reduces the intention to use QRIS.
Keywords: Facilitating Condition, Behavioral Intention, Performance Expectancy, Social Influence
References
Chin, W. W. (1998). The Partial Least Squares Approach for Structural Equation Modeling. In Modern Methods for Business Research (pp. 295-336). Lawrence Erlbaum Associates.
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, Publishers.
Davis, Richard P. Bagozzi, Paul R. Warshaw, (1989) User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Management Science 35(8):982-1003.
Farzin, M., Sadeghi, M., Yahyayi Kharkeshi, F., Ruholahpur, H. and Fattahi, M. (2021), "Extending UTAUT2 in M-banking adoption and actual use behavior: Does WOM communication matter?", Asian Journal of Economics and Banking, Vol. 5 No. 2, pp. 136-157. https://doi.org/10.1108/AJEB-10-2020-0085
Featherman, M. S., & Pavlou, P. A. (2003). Predicting e-services adoption: a perceived risk facets perspective. International Journal of Human-Computer Studies, 59(4), 451-474.
Flavián, C., & Guinalíu, M. (2006). Consumer trust, perceived security and privacy policy: Three basic elements of loyalty to a web site. Industrial Management & Data Systems, 106(5), 601-620
Gefen, D., Karahanna, E., & Straub, D. W. (2003). Inexperience and generalizations about technology: An empirical examination of the role of trust in technology acceptance. Journal of Strategic Information Systems, 12(1), 27-51.
Gefen, D., Karahanna, E., & Straub, D. W. (2003). Trust and TAM in online shopping: An integrated model. MIS Quarterly, 27(1), 51-90.
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM) (2nd ed.). Sage Publications.
Hair, J.F. dkk, (2019) When to use and how to report the results of PLS-SEM, European Business Review, 31(1), pp. 2–24. doi:10.1108/EBR-11-2018-0203.
Khan, M. A., & Sadiq, M. (2018). The Impact of Hedonic motivation on Behavioral Intention to Use Mobile Payment: An Empirical Study. Journal of Internet Commerce, 17(2), 163-183.
Kim, B., & Park, MJ (2018). Pengaruh faktor pribadi dalam penggunaan TIK terhadap adopsi e-learning: Perbandingan antara peserta didik dan instruktur di negara-negara berkembang. Teknologi Informasi untuk Pembangunan, 24 (4), 706–732.
Kim, D. J., Ferrin, D. L., & Rao, H. R. (2008). A trust-based consumer decision-making model in electronic commerce: The role of trust, perceived risk, and perceived security. Information Systems Research, 19(1), 42-70.
Limantara, N., Jingga, F., & Surja, S. (2018). Factors Influencing Mobile Payment Adoption in Indonesia. International Conference on Information Management and Technology, 373-377.
Limayem, M., Hirt, S. G., & Cheung, C. M. (2007). How habit limits the predictive power of intention: The case of information systems continuance. MIS Quarterly, 31(4), 705-737.
Nuari, E. S., Nurkhin, A., & Kardoyo, K. (2019). Analisis Determinan Pemanfaatan Edmodo Dengan Menggunakan Unified Theory of Acceptance and Use of Technology (Utaut). Jurnal Pendidikan Akuntansi Indonesia, 17(1), 57–73. https://doi.org/10.21831/jpai.v17i1.26337
Pan, M., & Gao, W. (2021). Determinants of the behavioral intention to use a mobile nursing application by nurses in China. BMC health services research, 21(1), 228. https://doi.org/10.1186/s12913-021-06244-3
Pavlou, P. A. (2003). Consumer acceptance of electronic commerce: Integrating trust and risk with the technology acceptance model. International Journal of Electronic Commerce, 7(3), 101-134.
Petersen, J. A., & Kumar, V. (2015). Perceived risk, product returns, and optimal resource allocation: Evidence from a field experiment. Journal of Marketing Research, 52(2), 268-285. https://doi.org/10.1509/jmr.14.0174
Rader, N. E., May, D. C., & Goodrum, S. (2007). An empirical assessment of the "threat of victimization:" Considering fear of crime, perceived risk, avoidance, and defensive behaviors. Sociological Spectrum, 27(5), 475–505. https://doi.org/10.1080/02732170701434591
Shin, D.H. (2010) The Effects of Trust, Security and Privacy in Social Networking: A Security-Based Approach to Understand the Pattern of Adoption. Interacting with Computers, 22, 428-438. https://doi.org/10.1016/j.intcom.2010.05.001
Slade, E. L., Dwivedi, Y. K., Piercy, N. C., & Williams, M. D. (2015). Modeling Consumers' Adoption Intentions of Remote Mobile Payments in the United Kingdom: Extending UTAUT with Innovativeness, Risk, and Trust. Psychology and Marketing, 32(8), 860-873. https://doi.org/10.1002/mar.20823
Sudirman, A., Butarbutar, N., & Lie, D. (2022). Analysis of the effect of performance expectancy, effort expectancy, and lifestyle compatibility on behavioral intention QRIS in Indonesia. International Journal of Scientific Research and Management, 10(11), 4203-4211.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
Venkatesh, V., Thong, J. Y., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157-178.
Wibowo, A. H., Mursityo, Y. T., & Herlambang, A. D. (2019). Pengaruh Performance Expectancy, Effort Expectancy dan Social Influence terhadap Behavioral Intention dalam Implementasi Aplikasi SIMPG PT Perkebunan Nusantara XI Surabaya. Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(9), 9047–9053. Diambil dari https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/6338
Widyanto, H. A., Kusumawardani, K. A., & Septyawanda, A. (2020). Encouraging Behavioral Intention to use Mobile Payment: an extension of UTAUT2. Jurnal Muara Ilmu Ekonomi dan Bisnis, 87-97. Yogyakarta: Pandiva Buku
Copyright (c) 2024 Deni Saputra, Anies Lastiati
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.