Implementasi Artificial Intelligence dalam Audit Forensik untuk Pengembangan Model Deteksi Fraud Berbasis Anomali Transaksi
DOI:
https://doi.org/10.31539/zbtzpg31Abstract
This study aims to analyze the implementation of Artificial Intelligence (AI) in forensic auditing as a foundation for developing an anomaly-based fraud detection model. Using the Systematic Literature Review (SLR) method under the PRISMA framework, this research examines 53 peer-reviewed articles indexed in Scopus, ScienceDirect, and Sinta to identify global research trends on AI applications in fraud detection. Bibliometric analysis using VOSviewer reveals four dominant clusters: AI-Driven Fraud Detection, Forensic Accounting Integration, Machine Learning Anomaly Recognition, and Ethical Transparency and Explainable AI. The findings indicate that integrating machine learning and deep learning significantly enhances fraud detection accuracy, accelerates auditing processes, and strengthens algorithmic transparency. The study concludes that AI implementation serves as a strategic foundation for developing adaptive, predictive, and accountable forensic audit systems in the digital era, while also expanding the theoretical basis of fraud theory toward a technology-driven audit framework.
Keywords: Artificial Intelligence, Forensic Audit, Fraud Detection.
References
Adelakun, B. O., Onwubuariri, E. R., Adeniran, G. A., & Ntiakoh, A. (2024). Enhancing fraud detection in accounting through AI: Techniques and case studies. Finance & Accounting Research Journal. https://doi.org/10.51594/farj.v6i6.1232
Aksoy, T., & Uzay, Ş. (2021). Relationship Between Fraud Auditing and Forensic Accounting. 127–146. https://doi.org/10.1007/978-3-030-72628-7_6
Albahsh, R., & Al-Anaswah, M. (2024). Artificial intelligence applications in auditing processes in the banking sector. Corporate Ownership and Control. https://doi.org/10.22495/cocv21i3art3
Ali, A., Razak, S. A., Othman, S. H., Eisa, T., Al-dhaqm, A., Nasser, M., Elhassan, T. A., Elshafie, H., & Saif, A. (2022). Financial Fraud Detection Based on Machine Learning: A Systematic Literature Review. Applied Sciences. https://doi.org/10.3390/app12199637
Antwi, B. O., Adelakun, B. O., Fatogun, D. T., & Olaiya, O. P. (2024). Enhancing audit accuracy: The role of AI in detecting financial anomalies and fraud. Finance & Accounting Research Journal. https://doi.org/10.51594/farj.v6i6.1235
Awad, A., Akola, O., Amer, M., & Mousa, E. K. A. (2025). Artificial intelligence in financial statement preparation: Enhancing accuracy, compliance, and corporate performance. International Journal of Innovative Research and Scientific Studies. https://doi.org/10.53894/ijirss.v8i2.5166
Bani, P., & Siregar, N. (2025). Forensic Audit in Fraud Detection and Prevention for General Insurance Claims: A Literature Review. International Journal of Integrative Research. https://doi.org/10.59890/ijir.v3i3.422
Everhart, J. (2023). Audit, Fraud, and Forensic Accounting. International Journal of Business & Management Studies. https://doi.org/10.56734/ijbms.v4n11a2
Friday, S. C., Lawal, C. I., Ayodeji, D. C., & Sobowale, A. (2024). Reviewing the Effectiveness of Digital Audit Tools in Enhancing Corporate Transparency. International Journal of Advanced Multidisciplinary Research and Studies. https://doi.org/10.62225/2583049x.2024.4.6.4099
Grissa, I., & Abaoub, E. (2024). Enhancing Fraud Detection in Financial Statements with Deep Learning: An Audit Perspective. International Journal For Multidisciplinary Research. https://doi.org/10.36948/ijfmr.2024.v06i01.13451
Herrera-Sánchez, M. J., Casanova-Villalba, C. I., Concha-Ramírez, J. A., & López-Pérez, P. J. (2024). Impacto de la inteligencia artificial en los procesos de auditoría contable. Innova Science Journal. https://doi.org/10.63618/omd/isj/v2/n1/28
Ikhsan, W. M., Ednoer, E. H., Kridantika, W. S., & Firmansyah, A. (2022). Fraud Detection Automation Through Data Analytics And Artificial Intelligence. Riset. https://doi.org/10.37641/riset.v4i2.166
Ilori, O. (2023). Ai-Driven Audit Analytics: A Conceptual Model For Real-Time Risk Detection And Compliance Monitoring. Finance & Accounting Research Journal. https://doi.org/10.51594/farj.v5i12.1900
Imane, L. (2025). Artificial intelligence in financial auditing: Improving efficiency and addressing ethical and regulatory challenges. Brazilian Journal of Business. https://doi.org/10.34140/bjbv7n1-017
Islam, M. S., & Rahman, N. (2025). AI-Driven Fraud Detections in Financial Institutions: A Comprehensive Study. Journal of Computer Science and Technology Studies. https://doi.org/10.32996/jcsts.2025.7.1.8
Ivakhnenkov, S. (2023). Artificial intelligence application in auditing. Scientific Papers NaUKMA. Economics. https://doi.org/10.18523/2519-4739.2023.8.1.54-60
Janrosl, V. S. E., Muda, I., Sadalia, I., Nasution, A., & Erlina. (2025). Fraud detection mediation: Personality auditor and forensic accounting on audit quality. International Journal of Applied Economics, Finance and Accounting. https://doi.org/10.33094/ijaefa.v21i2.2189
Kumar, S., & Venkata, S. (2025). AI in Audit: Unlocking Deep Analytical-Based Testing. Journal of Computer Science and Technology Studies. https://doi.org/10.32996/jcsts.2025.7.3.67
Lamgade, N. (2024). Fraud Detection And Prevention In Financial Institutions. Interantional Journal Of Scientific Research In Engineering And Management. https://doi.org/10.55041/ijsrem32731
Lestari, P. A., & Edeh, F. O. (2024). The Impact of Regulatory Frameworks on Fraud Detection in Auditing. Sinergi International Journal of Accounting and Taxation. https://doi.org/10.61194/ijat.v2i1.477
Mayne, E. S., Rodríguez, E. A., Uvidia, J. F. V., Maurisaca, N. E. C., & Pinto, C. (2024). Integrating Artificial Intelligence Algorithms in Financial Audits: A Disruptive Approach to Fraud Detection. Journal of International Crisis and Risk Communication Research. https://doi.org/10.63278/jicrcr.vi.1506
Mehta, K., Mittal, P., Gupta, P., & Tandon, J. K. (2022). Analyzing the Impact of Forensic Accounting in the Detection of Financial Fraud: The Mediating Role of Artificial Intelligence. 585–592. https://doi.org/10.1007/978-981-16-2597-8_50
Melendez, F. R., & Herrera, J. S. (2025). Integrating AI Algorithms into Financial Audits: A Disruptive Approach to Fraud Detection. Journal of Posthumanism. https://doi.org/10.63332/joph.v5i6.2397
Mendonça, L., Rosa, B., & Leal, G. (2022). A Utilização De Inteligência Artificial -Machine Learning E Business Intelligence- Na Detecção E Prevenção De Fraudes Contábeis: Primeiras aproximações. ENCICLOPÉDIA BIOSFERA. https://doi.org/10.18677/encibio_2022c1
Moradi, A., Hamideh َAsnaashari, Rohban, M. H., Yazdi, M. A. M., & Bandari, M. H. S. (2023). fraud and anomaly detection research: A bibliometric study. Journal of Value & Behavioral Accounting. https://doi.org/10.61186/aapc.7.14.1
Nonnenmacher, J., & Gómez, J. (2021). Unsupervised anomaly detection for internal auditing: Literature review and research agenda. The International Journal of Digital Accounting Research. https://doi.org/10.4192/1577-8517-v21_1
Odeyemi, O., Ibeh, C. V., Mhlongo, N. Z., Asuzu, O. F., Awonuga, K. F., & Olatoye, F. O. (2024). Forensic Accounting And Fraud Detection: A Review Of Techniques In The Digital Age. Finance & Accounting Research Journal. https://doi.org/10.51594/farj.v6i2.788
Okafor, G., Naibe, I., Diala, A. K., & Akhuemonkhan, E. E. (2025). The role of forensic auditing in strengthening corporate transparency and fraud prevention in financial institutions. Finance & Accounting Research Journal. https://doi.org/10.51594/farj.v7i2.1857
Onwubuariri, E. R., Adelakun, B. O., Olaiya, O. P., & Ziorklui, J. E. K. (2024). AI-Driven risk assessment: Revolutionizing audit planning and execution. Finance & Accounting Research Journal. https://doi.org/10.51594/farj.v6i6.1236
Priyo, A. (2025). Transforming Financial Auditing in the Era of Artificial Intelligence. Global Management: International Journal of Management Science and Entrepreneurship. https://doi.org/10.70062/globalmanagement.v2i2.199
Pycka, M., & Zastempowski, M. (2025). Machine learning and artificial intelligence techniques adopted for IT audit. Management. https://doi.org/10.58691/man/200768
Ramos, S., Perez-Lopez, J. A., & Abreu, R. (2024). Bibliometric analysis of artificial intelligence trends in auditing and fraud detection. Corporate Governance and Organizational Behavior Review. https://doi.org/10.22495/cgobrv8i2sip8
Rawat, R., Oki, O., Chakrawarti, R., Adekunle, T. S., Lukose, J., & Ajagbe, S. (2023). Autonomous Artificial Intelligence Systems for Fraud Detection and Forensics in Dark Web Environments. Informatica (Slovenia), 47. https://doi.org/10.31449/inf.v46i9.4538
Riabchuk, O., & Rakut, D. (2025). Auditing And Artificial Intelligence: How Technology Is Changing The Auditing Profession. State and Regions. Series: Economics and Business. https://doi.org/10.32782/1814-1161/2025-1-9
Romero-Carazas, R., Espiritu-Martinez, A. P., Aguilar-Cuevas, M. M., Usuriaga-Palacios, M. N., Aguilar-Cuevas, L. A., Espinoza-Véliz, M. Z., Espinoza-Egoavil, M. J., & Gutiérrez-Monzón, S. G. (2024). Forensic auditing and the use of artificial intelligence: A bibliometric analysis and systematic review in Scopus between 2000 and 2024. Heritage and Sustainable Development. https://doi.org/10.37868/hsd.v6i2.626
Romero-Rodríguez, J.-M., Ramírez-Montoya, M.-S., Buenestado-Fernández, M., & Lara-Lara, F. (2023). Use of ChatGPT at University as a Tool for Complex Thinking: Students’ Perceived Usefulness. Journal of New Approaches in Educational Research, 12(2), 323–339. https://doi.org/10.7821/naer.2023.7.1458
Sathe, D. A. K. (2020). Forensic Accounting in the Age of AI: Detecting Fraud with Data Anomalies. International Journal of Social Impact. https://doi.org/10.25215/2455/1003053
Sharma, M., & Biswas, B. (2021). Application of Artificial Intelligence in Forensic Audit. The Management Accountant Journal. https://doi.org/10.33516/maj.v56i10.51-53p
Supriadi, I. (2024). The audit revolution: Integrating artificial intelligence in detecting accounting fraud. Akuntansi Dan Teknologi Informasi. https://doi.org/10.24123/jati.v17i1.6279
Suyono, W. P., Puspa, E. S., Anugrah, S., & Firnanda, R. (2025). Artificial Intelligence in Auditing: A Systematic Review of Tools, Applications, and Challenges. RIGGS: Journal of Artificial Intelligence and Digital Business. https://doi.org/10.31004/riggs.v4i2.1024
Tekavčič, M., & Damijan, S. (2021). Forensic Accounting vs Fraud examination: Roles, Importance and Differences. Journal of Forensic Accounting Profession, 1, 29–47. https://doi.org/10.2478/jfap-2021-0007
Vutumu, A. (2024). Building the Foundation: Towards a Theoretical Framework for Forensic Accounting. International Journal of Accounting, Finance and Risk Management. https://doi.org/10.11648/j.ijafrm.20240904.12
Yuhertiana, I., & Amin, A. H. (2024). Artificial Intelligence Driven Approaches for Financial Fraud Detection: A Systematic Literature Review. KnE Social Sciences. https://doi.org/10.18502/kss.v9i20.16551
Zeng, S., & Li, H. (2025). Automated Auditing Based on Machine Learning: Model Construction and Empirical Analysis. Computer Fraud and Security. https://doi.org/10.52710/cfs.558
Zhang, C. J., Gill, A., Liu, B., & Anwar, M. (2025). AI-based Identity Fraud Detection: A Systematic Review. ArXiv, abs/2501.09239. https://doi.org/10.48550/arxiv.2501.09239
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Ulumiddin, Eka Hadiwijaya, Amiartuti Kusmaningtyas, Maria Yovita R. Pandin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
