Evaluasi Peramalan Penjualan dalam Menentukan Besaran Produksi yang Optimal pada Perusahaan Umum Daerah (PERUMDA) Perkebunan Kahyangan Jember

  • Adhila Dyah Nirmala Universitas Muhammadiyah Jember
  • Achmad Hasan Hafidzi Universitas Muhammadiyah Jember
  • Yusron Rozzaid Universitas Muhammadiyah Jember

Abstract

The purpose of  this study is to find out the best forecasting method to  overcome  the gap between the demand for roasted coffee desired by consumers and the production fulfilled by the company. The data used is secondary data in the form of reports on the production and sales of roasted coffee Perumda Kahyangan Jember Plantation. The sample used in this study was 24 sales data of roasted coffee per month with purposive sampling techniques. The forecasting model used in this study is  Time Series consisting of  Naive, Moving Average methods, and Exponential Smoothing with a Mean Absolute Percentage Error (MAPE) measuring instrument  as a  standard reference for measuring forecasting errors. The results showed that  the 4-month Moving Average method is the best forecasting method. This is based on the measurement of the forecasting error of the MAPE value of 13%. The lower the percentage error in MAPE, the more accurate the forecasting results. From the results of the study, it can be concluded that  the Moving Average method  for  a period of 4 months can be used as a reference for companies in determining roasted coffee production in the next period, which is 2,248.75 kg.

 

Keywords: Exponential Smoothing; MAPE; Moving Average; Naive; Forecasting; Time Series

References

Alviyanur, A. (2022). Analisis Perencanaan Produksi Menggunakan Metode Forecasting. Jurnal Indonesia Sosial Teknologi, 3(3), 426–437. https://doi.org/10.36418/jist.v3i3.387

Anshori, M., & Widyaningrum, D. (2022). Peramalan Permintaan Produk Cepat Rusak Dengan Metode Moving Average dan Single Exponential Smoothing. Jurnal Serambi Engineering, 7(4), 3725-3732. https://doi.org/10.32672/jse.v7i4.4701

Azman Maricar, M. (2019). Analisa Perbandingan Nilai Akurasi Moving Average dan Exponential Smoothing untuk Sistem Peramalan Pendapatan pada Perusahaan XYZ. Jurnal Sistem Dan Informatika (JSI), 13(2), 36–123. https://jsi.stikom-bali.ac.id/index.php/jsi/article/view/193

Harahap, F. R., & Darnius, O. (2022). Optimasi Parameter Exponential Smoothing Holt-Winters Dengan Metode Golden Section Dan Pencarian Dikotomi. FARABI: Jurnal Matematika Dan Pendidikan Matematika, 5(2), 104–115. https://doi.org/10.47662/farabi.v5i2.385

Anshori, M., & Widyaningrum, D. (2022). Peramalan Permintaan Produk Cepat Rusak Dengan Metode Moving Average dan Single Exponential Smoothing. Jurnal Serambi Engineering, 7(4), 3725-3732. https://doi.org/10.32672/jse.v7i4.4701.

Marlina, W. A., Susiana, S., N, E., & Ahmad, F. A. (2018). Forecasting technique using time sequence: model penentuan volume produksi Sanjai di UKM Rina Payakumbuh. Jurnal Manajemen, 9(2), 187. https://doi.org/10.32832/jm-uika.v9i2.1567

Meliana, D., Suharto, S., & Endah Suwarni, P. (2020). Analisis Peramalan Penjualan Air Minum Dalam Kemasan 240ml Pada PT Trijaya Tirta Darma (Great) Dengan Metode Single Moving Average Dan Exponential Smoothing. Industrika: Jurnal Ilmiah Teknik Industri, 4(2) 114-1120. https://doi.org/10.37090/indstrk.v4i2.235

Paruntu, S. A., Palandeng, I. D., Ekonomi dan Bisnis, F., & Manajemen Universitas Sam Ratulangi, J. (2018). Analisis Ramalan Penjualan Dan Persediaan Produk Sepeda Motor Suzuki Pada Pt Sinar Galesong Mandiri Malalayang Analysis Of Sales Forecast And Inventory For Suzuki Motorcycle Products At Pt Sinar Galesong Mandiri Malalayang. Jurnal EMBA, 6(4), 2828–2837. https://doi.org/10.35794/emba.v6i4.21067

Pujia Khan, S., Mustika Ayuningtyas, S., Rohmah, W., Indah Vindari, Z., & Gita Azzahra, A. (2023). Analisa Perbandingan Nilai Akurasi Exponential Smoothing dan Linier Regresion pada Peramalan Permintaan Part Joint Brake Rod KTMY. VIII(1), 4251-4260. https://doi.org/https://doi.org/10.32672/jse.v8i1.5523

Rusdiana, A. (2014). Manajemen Operasi. Bandung: CV PUSTAKA SETIA.

Sudiman, S. (2020). Peramalan Untuk Perencanaan Produksi Stop Valve Tipe Tx277s Menggunakan Metode Peramalan Deret Waktu (Time Series) Di Pt. Xyz. Jitmi (Jurnal Ilmiah Teknik Dan Manajemen Industri), 3(1), 7-14. https://doi.org/10.32493/jitmi.v3i1.y2020.p7-14

Sukmono, R. A., & Supardi. (2020). Manajemen Operasional dan Implementasi dalam Industri. Sidoarjo: UMSIDA Press.

Wiharja, A. F., & Ningrum, H. F. (2020). Analisis Prediksi Penjualan Produk PT. Joenoes Ikamulya Menggunakan 4 Metode Peramalan Time Series. Jurnal Bisnisman : Riset Bisnis Dan Manajemen, 2(1), 43–51. https://doi.org/10.52005/bisnisman.v2i1.23
Published
2023-12-20
Abstract viewed = 33 times
pdf downloaded = 25 times