COSTING: Journal of Economic, Business and Accounting

Volume 7 Nomor 5 Tahun 2024

e-ISSN: 2597-5234

ANALYSIS OF OPERATIONAL MANAGEMENT OF ACADEMIC INSTITUTIONS (Case Study on the STIAMI Institute)

Aryani¹, Malviyola el barqa², Roviuddin³, Safuan³

Fakultas Ekonomi & Bisnis, Universitas Esa Unggul

Email: aryani_wijaya21@student.esaunggul.ac.id, malviyolae@gmail.com, roviuddin@gmail.com, safuan@esaunggul.ac.id

ABSTRACT

Operational management itself is the main management function in a company. Operations management is growing rapidly due to technological advancements and the emergence of new innovations implemented in business practices. Currently, many companies have glanced at and made operations management a strategic tool in competing between companies. Operational management is needed to give birth to new innovations and changes for the better. Because along with the times, the industry is getting more advanced so that companies are required to present the best quality in the products or services produced, but do not forget the impact on the surrounding environment from all company activities. This study aims to analyze operational management in academic institutions. The focus of this research is to identify strengths, weaknesses, opportunities, and threats in operational management and provide recommendations for improving operational efficiency and effectiveness. The research methods used include interviews, surveys, and document analysis. The results of the study show that effective operational management can improve the quality of education services and operational efficiency.

Keywords: Operational Management, Academic Institutions, Efficiency, Quality of Education

INTRODUCTION

Operational management plays a very important role in the success of an organization, including academic institutions. In higher education, effective operational management not only ensures that administrative and academic processes run smoothly, but also improves the quality of educational services to students (Heizer et al., 2020). Efficiency in operational management allows academic institutions to optimize resources such as human resources, facilities, and technology (Krajewski & Malhotra, 2022). In today's era of global competition, higher education institutions must be able to manage their operations well in order to compete and meet the expectations of stakeholders (Hill & Hill, 2017).

Operational management is the main function in company management. Operational management has evolved rapidly thanks to technological advancements and new innovations applied in business practices. Many companies now consider operational management as a strategic tool to compete (Slack & Brandon-Jones, 2018). Operational management is needed to give birth to better innovation and change. With the development of the times, the industry is also advanced so that companies are required to present the best quality in the products or services produced, without forgetting the environmental impact of the company's activities (Stevenson et al., 2007).

Academic institutions face various challenges in managing their operations, ranging from facility management, human resource

management, to the proper implementation of information technology. In addition, they must also ensure that all operational processes are aligned with the mission and vision of the institution and meet the quality standards set by the accreditation body (Evans & Lindsay, 2010). Ineffective management can result in problems such as student dissatisfaction, declining quality of education, and poor cost efficiency.

In recent years, many academic institutions have begun to apply modern operational management principles such as Lean Management and Total Quality Management (TQM) to improve operational efficiency and effectiveness (Womack & Jones, 1997). Lean Management focuses on reducing waste and increasing added value for customers, while TQM emphasizes improving quality through the participation of all members of the organization (Goetsch & Davis, 2016). The application of these principles requires a change in organizational culture and commitment from all staff and management.

The STIAMI Institute, as one of the higher education institutions in Jakarta, also faces various challenges in its operational management, ranging from facility management, human resource management, to the implementation of appropriate information technology. In addition, the STIAMI Institute must ensure that all operational processes are aligned with the mission and vision of the institution and meet the quality standards set by the accreditation body.

This research was conducted to analyze operational management at the STIAMI Institute. By analyzing the strengths, weaknesses, opportunities, and threats (SWOT Analysis) in the operational management of this institute, it is hoped that areas that need to be improved and strategies that can be implemented to improve the efficiency and quality of education services can be found. The results of this research are expected to make a meaningful contribution to the STIAMI Institute and become a reference for other academic institutions that want to improve their operational management.

RESEARCH METHODS

Data Collection:

- Surveys and Questionnaires: Gathering feedback from students, faculty, staff, and parents.
- Data Seconds: Use industry reports, academic publications, and government statistics to understand macro trends.
 - a. Data Analysis:
 - Statistical Analysis: Using statistical tools to identify patterns and changes in data.
 - Data Visualization: Create graphs and diagrams to visualize trends and make them easier to understand.
 - b. Benchmarking Comparison:
 - Benchmarking: Comparing the performance of an institution with industry standards or other similar institutions to identify best practices and areas of improvement.

RESULTS AND DISCUSSIONS

Implementation of LMS (Learning Management System), STIAMI Institute has adopted LMS such as Moodle or Google Classroom to facilitate online learning. Through this platform, students can access lecture materials, upload assignments, and take exams online (Al-Azawei et al., 2016). Lecturers can also monitor student progress in real-time and provide feedback quickly (Dahlstrom et al., 2014). The use of an education management information system (SIMP) allows for integrated management of student data, lecture schedules, and finances (Kumar, 2017). For example, students can register for courses, pay tuition fees, and view exam schedules through an online portal called Single Sign-On (SSO) that is integrated with the relevant section (Nepal et al., 2015). Combining Face-to-Face and Online Classes, the STIAMI Institute has implemented a hybrid learning model, where some lectures are conducted face-to-face and others are online. This provides flexibility for students who have jobs or other commitments, as well as maximizing the use of existing classrooms (Graham, 2013).

The STIAMI Institute uses a dashboard to visualize student performance data and campus operations. For example, data on attendance, test scores, and student participation in extracurricular activities can be analyzed to identify trends and areas that need improvement (Chen et al., 2012). If the data shows a decrease in attendance in some classes, management can investigate the cause and take necessary actions, such as changing the schedule or teaching methods (Picciano, 2012). With the SSO method, lecturers and staff can monitor the learning progress of students individually. For example, students who show low performance in some courses can be identified early and provided with additional guidance or necessary learning resources (Vovides et al., 2007).

Integrated Quality Management (Total Quality Management) at STIAMI Institute.

Using the Lean approach, the STIAMI Institute has identified and eliminated steps that do not add value in the administrative process (Womack & Jones, 1997). For example, the registration process that previously required several manual steps has now been simplified into one efficient online process. The use of online forms for re-registration and payment of tuition fees has reduced student waiting times and improved operational efficiency (Womack & Jones, 1997).

TQM at the STIAMI Institute involves all staff and lecturers in the process of continuous improvement. Every semester, training and workshops are held to improve the quality of teaching and services (Oakland, 2014). One of them is a student satisfaction survey that is carried out regularly to measure the quality of service and teaching. Feedback from this survey is used to make necessary improvements (Evans & Lindsay, 2010).

CONCLUSION AND SUGGESTION

The STIAMI Institute has shown significant progress in its operational management through the use of technology, data analytics, sustainable practices, and the implementation of Lean Management and TQM. Digitalization has improved the efficiency and accessibility of education services, while data-driven management has enabled more informed and responsive decision-making.

Green campus initiatives and flexible use of space have created a better learning environment, supported operational efficiency, and improved the quality of life on campus. The implementation of Lean Management and TQM has reduced waste and improved the quality of education services.

However, there is still room for improvement, especially in terms of digital infrastructure, data analytics optimization, strengthening sustainable programs, and consistency

in the implementation of Lean Management and TQM. By continuously conducting continuous evaluation and improvement, the STIAMI Institute can achieve a higher level of efficiency and quality of service, which will ultimately improve student satisfaction and the competitiveness of the institution in the higher education market. By considering the following suggestions:

- 1. Digital Infrastructure Improvement
 Internet Infrastructure Development Ensure
 stable and fast internet access for all students and
 staff, especially those in areas with low
 connectivity and tend to be unstable and hold
 technology-based training in the provision of
 continuous training for lecturers and staff to
 improve their skills mereka dalam menggunakan
 teknologi pendidikan.
- 1. Data Analytics Optimization

 Must improve the pattern of data system integration in Improving the integration between various data systems to ensure that the data used is accurate and up-to-date with Capacity Development (Big Capacity) to provide intensive training to staff on data analysis and the use of analytics tools to improve the understanding and utilization of data in decision-making.
- Strengthening Sustainable Programs
 Conduct frequent evaluations and monitoring to conduct regular evaluations of sustainable initiatives by ensuring effectiveness and looking for areas where improvements can be made at the level of student discipline in increasing student participation in sustainable programs through awareness campaigns and activities that involve them directly.

3. Improved Consistency of Lean Management and

TQM
Conduct periodic and periodic regular evaluations to conduct regular evaluations and ensure that the application of Lean and TQM principles runs well in all sections/areas of the directorate and share best practices between fields and provide a platform to share experiences and innovative solutions to find out the results of the process carried out

REFERENCES

continuously.

- Al-Azawei, A., Parslow, P., & Lundqvist, K. (2016).

 Barriers and opportunities of e-learning implementation in Iraq: A case of public universities. The International Review of Research in Open and Distributed Learning, 17(5).
- Chen, H., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From big data to big impact. MIS Quarterly, 1165–1188. https://doi.org/10.2307/41703503
- Dahlstrom, E., Brooks, D. C., & Bichsel, J. (2014). The current ecosystem of learning management systems

- in higher education: Student, faculty, and IT perspectives.
- Evans, J. Ř., & Lindsay, W. M. (2010). Managing for quality and performance excellence. Delmar Learning. https://dl.acm.org/doi/abs/10.5555/1824171
- Goetsch, D. L., & Davis, S. B. (2016). Quality management for organizational excellence: Introduction to total quality. pearson. https://thuvienso.hoasen.edu.vn/handle/123456789/12433
- Graham, C. R. (2013). Emerging practice and research in blended learning. In Handbook of distance education (pp. 351–368). Routledge.
- Heizer, J., Render, B., & Munson, C. (2020). Operations management: sustainability and supply chain management. Pearson. https://thuvienso.hoasen.edu.vn/handle/123456789/12793
- Hill, A., & Hill, T. (2017). Essential operations management. Bloomsbury Publishing.
- Krajewski, L. J., & Malhotra, M. K. (2022). Operations management: Processes and supply chains. Pearson. https://thuvienso.hoasen.edu.vn/handle/123456789 /13052
- Nepal, S., Bista, S. K., & Paris, C. (2015). Behavior-Based Propagation of Trust in Social Networks with Restricted and Anonymous Participation. Computational Intelligence, 31(4), 642–668. https://doi.org/10.1111/coin.12041
- Oakland, J. S. (2014). Total quality management and operational excellence: text with cases. Routledge. https://doi.org/10.4324/9781315815725
- Picciano, A. G. (2012). The evolution of big data and learning analytics in American higher education. Journal of Asynchronous Learning Networks, 16(3), 9–20. https://eric.ed.gov/?id=EJ982669
- Slack, N., & Brandon-Jones, A. (2018). Essentials of operations management. Pearson UK.
- Stevenson, W. J., Hojati, M., Cao, J., Mottaghi, H., & Bakhtiari, B. (2007). Operations management. McMcGraw-Hill Irwin.
- Vovides, Y., Sanchez-Alonso, S., Mitropoulou, V., & Nickmans, G. (2007). The use of e-learning course management systems to support learning strategies and to improve self-regulated learning. Educational Research Review, 2(1), 64–74.
- Womack, J. P., & Jones, D. T. (1997). Lean thinking—banish waste and create wealth in your corporation. Journal of the Operational Research Society, 48(11), 1148. https://doi.org/10.1057/palgrave.jors.2600967