From Clicks to Conversations: The Evolution of Chatbot Marketing

  • Hendro Sugiarto Institut Pendidikan Indonesia
  • Desi Try Anggarini Universitas Bina Sarana Informatika Jakarta
  • Lati Sari Dewi STIE Latifah Mubarokiyah
Keywords: Chatbot marketing, User experience, Marketing strategy evolution, Number of Clicks

Abstract

This research investigates the dynamics of chatbot marketing within PT Sinar Sosro, focusing on the interplay between user experience, marketing strategy evolution, and the effectiveness of chatbot conversations. Through a quantitative approach utilizing Smart PLS analysis, data was gathered from a sample of 100 consumers. The findings reveal significant direct effects of both user experience and marketing strategy evolution on chatbot conversations, emphasizing their pivotal roles in driving meaningful engagements. Moreover, indirect effects analysis highlights the mediating role of user experience in the relationship between marketing strategy evolution / Number of Clicks and chatbot conversations. These insights underscore the importance of optimizing user-centric approaches and aligning marketing strategies with user preferences to foster positive experiences, enhance chatbot effectiveness, and achieve marketing objectives effectively within PT Sinar Sosro's digital ecosystem.

 

References

[1] H. Y. Abuaddous, A. M. Saleh, O. Enaizan, F. Ghabban, and A. B. Al-Badareen, “Automated User Experience (UX) Testing for Mobile Application: Strengths and Limitations,” Int. J. Interact. Mob. Technol., vol. 16, no. 4, pp. 30–45, 2022, doi: 10.3991/ijim.v16i04.26471.
[2] P. Prasad Vutti, “A Study on Applications of Artificial Intelligence in the Future of HR,” GBS Impact J. Multi Discip. Res., vol. 9, no. 1, pp. 55–61, 2023, doi: 10.58419/gbs.v9i1.912306.
[3] A. Al-Hunaiyyan, R. Alhajri, B. Alghannam, and A. Al-Shaher, “Student Information System: Investigating User Experience (UX),” Int. J. Adv. Comput. Sci. Appl., vol. 12, no. 2, pp. 80–87, 2021, doi: 10.14569/IJACSA.2021.0120210.
[4] R. Gunawan, G. Anthony, Vendly, and M. S. Anggreainy, “The Effect of Design User Interface (UI) E-Commerce on User Experience (UX),” Proc. 2021 6th Int. Conf. New Media Stud. CONMEDIA 2021, pp. 95–98, 2021, doi: 10.1109/CONMEDIA53104.2021.9617199.
[5] B. J. Ali and G. Anwar, “Marketing Strategy: Pricing strategies and its influence on consumer purchasing decision,” Int. J. Rural Dev. Environ. Heal. Res., vol. 5, no. 2, pp. 26–39, 2021, doi: 10.22161/ijreh.5.2.4.
[6] M. Faruk, M. Rahman, and S. Hasan, “How digital marketing evolved over time: A bibliometric analysis on scopus database,” Heliyon, vol. 7, no. 12, p. e08603, 2021, doi: 10.1016/j.heliyon.2021.e08603.
[7] C. K. Morewedge, A. Monga, R. W. Palmatier, S. B. Shu, and D. A. Small, “Evolution of Consumption: A Psychological Ownership Framework,” J. Mark., vol. 85, no. 1, pp. 196–218, 2021, doi: 10.1177/0022242920957007.
[8] B. Vlačić, L. Corbo, S. Costa e Silva, and M. Dabić, “Vlačić, B., Corbo, L., e Silva, S. C., & Dabić, M. (2021). The evolving role of artificial intelligence in marketing: A review and research agenda. Journal of Business Research , 128 , 187-203.,” J. Bus. Res., vol. 128, no. C, pp. 187–203, 2021.
[9] J. Sheth, “New areas of research in marketing strategy, consumer behavior, and marketing analytics: the future is bright,” J. Mark. Theory Pract., vol. 29, no. 1, pp. 3–12, 2021, doi: 10.1080/10696679.2020.1860679.
[10] L. Hensvik, T. Le Barbanchon, and R. Rathelot, “Job search during the COVID-19 crisis,” J. Public Econ., vol. 194, no. March 2020, p. 104349, 2021, doi: 10.1016/j.jpubeco.2020.104349.
[11] K. Sofiiuk, I. A. Petrov, and A. Konushin, “Reviving Iterative Training With Mask Guidance for Interactive Segmentation,” Proc. - Int. Conf. Image Process. ICIP, vol. 1071, pp. 3141–3145, 2022, doi: 10.1109/ICIP46576.2022.9897365.
[12] H. Wen et al., “Entire Space Multi-Task Modeling via Post-Click Behavior Decomposition for Conversion Rate Prediction,” SIGIR 2020 - Proc. 43rd Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., pp. 2377–2386, 2020, doi: 10.1145/3397271.3401443.
[13] W. Wang, F. Feng, X. He, H. Zhang, and T. S. Chua, “Clicks can be Cheating: Counterfactual Recommendation for Mitigating Clickbait Issue,” SIGIR 2021 - Proc. 44th Int. ACM SIGIR Conf. Res. Dev. Inf. Retr., pp. 1288–1297, 2021, doi: 10.1145/3404835.3462962.
[14] Y. Lu and J. Pan, “Capturing Clicks: How the Chinese Government Uses Clickbait to Compete for Visibility,” Polit. Commun., pp. 1–32, 2020, doi: 10.1080/10584609.2020.1765914.
[15] A. Abdellatif, D. Costa, K. Badran, R. Abdalkareem, and E. Shihab, “Challenges in Chatbot Development: A Study of Stack Overflow Posts,” Proc. - 2020 IEEE/ACM 17th Int. Conf. Min. Softw. Repos. MSR 2020, pp. 174–185, 2020, doi: 10.1145/3379597.3387472.
[16] D. Shin, H. Kim, J. H. Lee, and H. Yang, “Exploring the use of an artificial intelligence chatbot as second language conversation partners*,” Korean J. English Lang. Linguist., vol. 2021, no. 21, pp. 375–391, 2021, doi: 10.15738/kjell.21..202104.375.
[17] D. M. Park, S. S. Jeong, and Y. S. Seo, “Systematic Review on Chatbot Techniques and Applications,” J. Inf. Process. Syst., vol. 18, no. 1, pp. 26–47, 2022, doi: 10.3745/JIPS.04.0232.
[18] A. Rapp, L. Curti, and A. Boldi, “The human side of human-chatbot interaction: A systematic literature review of ten years of research on text-based chatbots,” Int. J. Hum. Comput. Stud., vol. 151, no. May, 2021, doi: 10.1016/j.ijhcs.2021.102630.
[19] A. F. Muhammad, D. Susanto, A. Alimudin, F. Adila, M. H. Assidiqi, and S. Nabhan, “Developing English Conversation Chatbot Using Dialogflow,” IES 2020 - Int. Electron. Symp. Role Auton. Intell. Syst. Hum. Life Comf., pp. 468–475, 2020, doi: 10.1109/IES50839.2020.9231659.
[20] S. Subadra, S. Natarajan, and U. Salma Shajahan, “The Impact Of Artificial Intelligence (AI) On Digital Marketing,” vol. 21, no. S6, pp. 1132–1142, 2024, [Online]. Available: www.migrationletters.com
[21] S. Paliwal, V. Bharti, and A. K. Mishra, “Ai chatbots: Transforming the digital world,” Intell. Syst. Ref. Libr., vol. 172, pp. 455–482, 2019, doi: 10.1007/978-3-030-32644-9_34.
[22] H. W. Alomari, V. Ramasamy, J. D. Kiper, and G. Potvin, “A User Interface (UI) and User eXperience (UX) evaluation framework for cyberlearning environments in computer science and software engineering education,” Heliyon, vol. 6, no. 5, p. e03917, 2020, doi: 10.1016/j.heliyon.2020.e03917.
[23] Babajide Tolulope Familoni and Sodiq Odetunde Babatunde, “User Experience (Ux) Design in Medical Products: Theoretical Foundations and Development Best Practices,” Eng. Sci. Technol. J., vol. 5, no. 3, pp. 1125–1148, 2024, doi: 10.51594/estj.v5i3.975.
[24] Å. Stige, E. D. Zamani, P. Mikalef, and Y. Zhu, “Artificial intelligence (AI) for user experience (UX) design: a systematic literature review and future research agenda,” Inf. Technol. People, 2023, doi: 10.1108/ITP-07-2022-0519.
[25] K. Tongkachok, G. Elkady, and S. Haddad, “Business, Management and Economics Engineering EFFECTIVE ROLE OF ARTIFICIAL INTELLIGENCE AND CHATBOTS IN MARKETING STRATEGIES FOR DECISION MAKING FOR ONLINE CUSTOMERS,” Business, Manag. Econ. Eng., vol. 20, no. 2, pp. 1150–1165, 2022, [Online]. Available: https://creativecommons.
[26] V. Kenih and J. Greene, “The Impact of Live Chat and Chatbot Solutions on Online Businesses,” 2021.
Published
2024-05-27
Abstract viewed = 17 times
pdf downloaded = 10 times