Evaluasi Bibliometrik Kinerja Sistem Dalam Meningkatkan Efisiensi Identifikasi Karyawan

  • Dadang Heri Kusumah Universitas Pelita Bangsa
  • Karyono Karyono Universitas Pelita Bangsa
  • Ahmad Gunawan Universitas Pelita Bangsa
Keywords: : Work Efficiency, Work Productivity, Employee Training, Work Motivation, Organizational Cultur

Abstract

In current workforce management, the integration of bibliometric systems has become a crucial strategy to streamline the employee identification process. This journal explores bibliometric analysis of existing literature to evaluate the performance of bibliometric systems in enhancing employee identification efficiency. Through a systematic examination of relevant studies, this research aims to provide insights into the current state of biometric technology, its applications, and its impact on workforce identification within organizational settings. The study employs bibliometric methods to assess the frequency and trends of key themes, technologies, and methodologies used in this field. The findings from this research offer a comprehensive understanding of advancements in biometric systems, their effectiveness in employee identification, and their implications for optimizing operational efficiency in contemporary workplaces.

References

Doeringer, P. B., & Piore, M. J. (2020). Internal labor markets and manpower analysis. taylorfrancis.com. https://doi.org/10.4324/9781003069720
Green, M., Dunlop, E., Hohl‐Ebinger, J., & ... (2021). Solar cell efficiency tables (version 57). Progress in …. https://doi.org/10.1002/pip.3371
Gunawan, A., Sopandi, E., Salsabila, M., Pangestu, M. I., & Assifah, R. (2023). Jurnal Manajemen, Volume 11 No 1, Januari 2023. Manajemen, 11(1), 1–9.
Imam Sucipto, Ahmad Gunawan, & Dadang Heri Kusumah. (2022). Work Motivation, Work Discipline, and Work Environment: Their Effects on Employee Performance at PT TRAD Indonesia. East Asian Journal of Multidisciplinary Research, 1(3), 511–534. https://doi.org/10.55927/eajmr.v1i3.75
Montgomery, D. C. (2019). Introduction to statistical quality control. books.google.com. https://books.google.com/books?hl=en&lr=&id=YWLNEAAAQBAJ&oi=fnd&pg=PR1&dq=work+efficiency&ots=hEXk1yqfCl&sig=7fYGjCl9a2s9fxBp49CCCkugK_M
Paszke, A., Gross, S., Massa, F., Lerer, A., & ... (2019). Pytorch: An imperative style, high-performance deep learning library. Advances in Neural …. https://proceedings.neurips.cc/paper_files/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
Stringer, E. T., & Aragón, A. O. (2020). Action research. Sage publications.
Tan, M., & Le, Q. (2019). Efficientnet: Rethinking model scaling for convolutional neural networks. International Conference on Machine Learning. http://proceedings.mlr.press/v97/tan19a.html?ref=jina-ai-gmbh.ghost.io
Wulan Febriani, A., Soetjipto, B. E., & Churiyah, M. (2023). Systematic Literature Review Dan Analisis Bibliometrik Pengaruh Work From Home (WFH) Terhadap Produktivitas Kerja Karyawan. Ganaya : Jurnal Ilmu Sosial Dan Humaniora, 6(3), 539–556. https://doi.org/10.37329/ganaya.v6i3.2402
Published
2024-08-02
Abstract viewed = 9 times
pdf downloaded = 6 times