KEY DETERMINANTS OF ESIM ADOPTION INTENTION AMONG INDONESIAN CONSUMERS
Abstract
This study examines the factors influencing eSIM adoption intention among consumers in Indonesia, where the technology remains relatively new. Using a quantitative research design, data was gathered from 150 respondents via a structured questionnaire. The analysis, conducted using Structural Equation Modeling (SEM), identifies key determinants, including perceived ease of use, perceived benefits, and environmental awareness. Results show that ease of use is the most significant factor driving eSIM adoption, with consumers favoring the simplicity and efficiency of the technology. Environmental awareness also plays a critical role, as consumers appreciate the eco-friendly aspect of eSIMs, which eliminates the need for plastic SIM cards. Price sensitivity is another major determinant, with cost considerations influencing adoption decisions. The study provides valuable insights for mobile network operators and marketers, suggesting that promoting the environmental and practical benefits of eSIMs could accelerate adoption. These findings contribute to the broader understanding of technology adoption in emerging markets and offer guidance on optimizing marketing strategies to foster consumer acceptance of eSIM technology.
References
Acikgoz, F., & Vega, R. P. (2022). The role of privacy cynicism in consumer habits with voice assistants: A technology acceptance model perspective. International Journal of Human–Computer Interaction. https://doi.org/10.1080/10447318.2022.2077564
Ahmed, R. R., Streimikiene, D., Qadir, H., & Streimikis, J. (2023). Effect of green marketing mix, green customer value, and attitude on green purchase intention: Evidence from the USA. Environmental Science and Pollution Research, 30(5), 11473-11495. https://doi.org/10.1007/s11356-022-22944-7
Ailawadi, K. L., Beauchamp, J. P., Donthu, N., Gauri, D. K., & Shankar, V. (2009). Communication and promotion decisions in retailing: A review and directions for future research. Journal of Retailing. https://doi.org/10.1016/j.jretai.2008.11.002
Al-Adwan, A. S., Li, N., Al-Adwan, A., Abbasi, G. A., Albelbisi, N. A., & Habibi, A. (2023). Extending the technology acceptance model (TAM) to predict university students’ intentions to use metaverse-based learning platforms. Education and Information Technologies, 28(11), 15381-15413. https://doi.org/10.1007/s10639-023-11816-3
Alfadda, H. A., & Mahdi, H. S. (2021). Measuring students’ use of Zoom application in language courses based on the technology acceptance model (TAM). Journal of Psycholinguistic Research, 50(4), 883-900. https://doi.org/10.1007/s10936-020-09752-1
Altay, B. C., Okumuş, A., & Adıgüzel Mercangöz, B. (2022). An intelligent approach for analyzing the impacts of the COVID-19 pandemic on marketing mix elements (7Ps) of the on-demand grocery delivery service. Complex & Intelligent Systems, 8(1), 129-140. https://doi.org/10.1007/s40747-021-00358-1
Batat, W. (2024). Why is the traditional marketing mix dead? Towards the “experiential marketing mix” (7E), a strategic framework for business experience design in the phygital age. Journal of Strategic Marketing, 32(2), 101-113. https://doi.org/10.1080/0965254X.2022.2129745
Bosque, I., & Herrero, Á. (2011, March 1). How do internet surfers become online buyers? An integrative model of e-commerce acceptance. https://doi.org/10.1080/01449291003656362
Caliskan, A., Özkan Özen, Y. D., & Ozturkoglu, Y. (2021). Digital transformation of traditional marketing business models in the new industry era. Journal of Enterprise Information Management, 34(4), 1252-1273. https://doi.org/10.1108/JEIM-02-2020-0084
Campbell, S., Greenwood, M., Prior, S., Shearer, T., Walkem, K., Young, S., & Walker, K. (2020). Purposive sampling: Complex or simple? Research case examples. Journal of Research in Nursing, 25(8), 652-661. https://doi.org/10.1177/1744987120927206
Cheah, J. H., Thurasamy, R., Memon, M. A., Chuah, F., & Ting, H. (2020). Multigroup analysis using SmartPLS: Step-by-step guidelines for business research. Asian Journal of Business Research. https://doi.org/10.14707/ajbr.200087
Clemes, M. D., Gan, C., & Zhang, J. (2014,). An empirical analysis of online shopping adoption in Beijing, China. Journal of Retailing and Consumer Services, 21(6), 922-928. https://doi.org/10.1016/j.jretconser.2013.08.003
Davis, F. D., Granić, A., & Marangunić, N. (2024). The technology acceptance model: 30 years of TAM. Springer International Publishing AG. https://doi.org/10.1007/978-3-030-45274-2
Do, Q., & Vu, T. (2020). Understanding consumer satisfaction with railway transportation service: An application of 7Ps marketing mix. Management Science Letters, 10(6), 1341-1350. https://doi.org/10.5267/j.msl.2019.11.023
Elgarhy, S. D., & Mohamed, L. M. (2023). The influences of services marketing mix (7Ps) on loyalty, intentions, and profitability in the Egyptian travel agencies: The mediating role of customer satisfaction. Journal of Quality Assurance in Hospitality & Tourism, 24(2), 169–191. https://doi.org/10.1080/1528008X.2022.2143412
Hair, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. (2018). Advanced issues in partial least squares structural equation modeling. SAGE Publications.
Hernández, B., Jiménez, J., & Martín, M. J. (2009, September 18). Adoption vs acceptance of e-commerce: Two different decisions. Internet Research, 19(4), 378-395. https://doi.org/10.1108/03090560910976465
Hinton, P. R. (2004). Statistics explained. https://doi.org/10.4324/9780203496787
Hortaçsu, A., Martínez-Jerez, F. A., & Douglas, J. (2009, February 1). The geography of trade in online transactions: Evidence from eBay and MercadoLibre. https://doi.org/10.1257/mic.1.1.53
Huang, Y. C., Li, L. N., Lee, H. Y., & Browning, M. H. E. M. (2023). Surfing in virtual reality: An application of extended technology acceptance model with flow theory. Computers in Human Behavior, 135, 107-121. https://doi.org/10.1016/j.chb.2023.107121
Inaray, A. C. P., Soewignyo, F., Sumanti, E. R., & Mandagi, D. W. (2024). Exploring the nexus between service quality, patient satisfaction, and recommendation intentions in faith-based hospital settings. EKUITAS (Jurnal Ekonomi dan Keuangan), 8(3), 398-417.
Jain, N. (2021). Survey versus interviews: Comparing data collection tools for exploratory research. The Qualitative Report, 26(2), 541-554. https://doi.org/10.46743/2160-3715/2021.4492
Lahtinen, V., Dietrich, T., & Rundle-Thiele, S. (2020). Long live the marketing mix. Testing the effectiveness of the commercial marketing mix in a social marketing context. Journal of Social Marketing, 10(3), 357-375. https://doi.org/10.1108/
Lestari, S. D., Leon, F. M., Widyastuti, S., Brabo, N. A., & Putra, A. H. P. K. (2020). Antecedents and consequences of innovation and business strategy on performance and competitive advantage of SMEs. The Journal of Asian Finance, Economics and Business, 7(6), 365-378. https://doi.org/10.13106/jafeb.2020.vol7.no6.365
Lim, W. M. (2021). A marketing mix typology for integrated care: The 10 Ps. Journal of Strategic Marketing, 29(5), 453-469. https://doi.org/10.1080/0965254X.2020.1775683
Lim, W. M. (2023). Transformative marketing in the new normal: A novel practice-scholarly integrative review of business-to-business marketing mix challenges, opportunities, and solutions. Journal of Business Research, 160, 113638. https://doi.org/10.1016/j.jbusres.2022.113638
Mandagi, D. W., & Aseng, A. C. (2021). Millennials and Gen Z’s perception of social media marketing effectiveness on the festival’s branding: The mediating effect of brand gestalt. Asia-Pacific Social Science Review, 21(3), 9. https://doi.org/10.59588/2350-8329.1389
Mandagi, D. W., & Centeno, D. (2024). Destination brand gestalt: dimensionalizing co-created tourism destination branding. International Journal of Tourism Cities.
Mandagi, D. W., Soewignyo, T., Kelejan, D. F., & Walone, D. C. (2024). From a hidden gem to a tourist spot: Examining brand gestalt, tourist attitude, satisfaction and loyalty in Bitung city. International Journal of Tourism Cities.
Mathew, V., & Soliman, M. (2021). Does digital content marketing affect tourism consumer behavior? An extension of technology acceptance model. Journal of Consumer Behaviour, 20(6), 1334-1345. https://doi.org/10.1002/cb.1931
Memon, M. A., Ramayah, T., Cheah, J. H., Ting, H., Chuah, F., & Cham, T. H. (2021). PLS-SEM statistical programs: A review. Journal of Applied Structural Equation Modeling, 5(1), 1-14. https://doi.org/10.47263/JASEM.5(1)06
Musa, H. G., Fatmawati, I., Nuryakin, N., & others. (2024). Marketing research trends using technology acceptance model (TAM): A comprehensive review of researches (2002–2022). Cogent Business & Management. https://doi.org/10.1080/23311975.2024.2112115
Othman, B., He, W., Huang, Z., Xi, J., & Ramsey, T. (2021). The effects on service value and customer retention by integrating after-sale service into the traditional marketing mix model of clothing store brands in China. Environmental Technology & Innovation, 23, 101784. https://doi.org/10.1016/j.eti.2021.101784
Praesri, S., Meekun, K., Lee, T. J., & Hyun, S. S. (2022). Marketing mix factors and a business development model for street food tourism. Journal of Hospitality and Tourism Management, 52, 123-127. https://doi.org/10.1016/j.jhtm.2022.06.007
Purohit, S., Paul, J., & Mishra, R. (2021). Rethinking the bottom of the pyramid: Towards a new marketing mix. Journal of Retailing and Consumer Services, 58, 102275. https://doi.org/10.1016/j.jretconser.2020.102275
Rafique, H., Almagrabi, A. O., Shamim, A., Anwar, F., & Bashir, A. K. (2020). Investigating the acceptance of mobile library applications with an extended technology acceptance model (TAM). Computers & Education, 145, 103732. https://doi.org/10.1016/j.compedu.2019.103732
Ravangard, R., Khodadad, A., & Bastani, P. (2020). How marketing mix (7Ps) affect the patients’ selection of a hospital: Experience of a low-income country. Journal of the Egyptian Public Health Association, 95, 1-8. https://doi.org/10.1186/s42506-020-00052-z
Saldanha, E. D. S., Silva, A., Seran, A. N., & Silva, H. B. D. (2021, December 20). The empirical model on the relationship among price, service quality, and customer purchasing decision: The case of the Dili Tais Market in Timor-Leste. BM Journal, 3(2), 17-25. https://doi.org/10.51703/bm.v3i2.51
Sekaran, U., & Bougie, R. (2016). Research methods for business: A skill building approach (7th ed.). John Wiley & Sons.
Swedberg, R. (2020). Exploratory research. The production of knowledge: Enhancing progress in social science, 2(1), 17–41. https://doi.org/10.1017/9781108762519
Walean, R. H., Pongoh, H., & Mandagi, D. (2024). Integrating Brand Gestalt and Customer Loyalty in Telecommunication Sector: The Mediating Role of Customer Satisfaction. International Review of Management and Marketing, 14(6), 409-423.
Walean, R. H., Wullur, L., & Mandagi, D. W. (2023). Constructing a Destination Gestalt Model: Brand Gestalt, Brand Attitude, and Revisit Intention. Asia-Pacific Social Science Review, 23(1), 105-125.
Wantah, A. M., & Mandagi, D. W. (2024,). Social media marketing and fast-food restaurant brand loyalty: The mediating role of brand gestalt. Information Economics and Business, 6(2), 337–343. https://doi.org/10.37034/infeb.v6i2.868
Wichmann, J. R. K., Uppal, A., Sharma, A., & Dekimpe, M. G. (2022). A global perspective on the marketing mix across time and space. International Journal of Research in Marketing, 39(2), 502–521. https://doi.org/10.1016/j.ijresmar.2021.09.001
Wu, R. Z., Lee, J. H., & Tian, X. F. (2021, May 12). Determinants of the intention to use cross-border mobile payments in Korea among Chinese tourists: An integrated perspective of UTAUT2 with TTF and ITM. Journal of Tourism and Cultural Heritage, 16(5), 86. https://doi.org/10.3390/jtaer16050086
Copyright (c) 2024 Jupiter Weku, Deske W. Mandagi
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.