PENGARUH KAPABILITAS DIGITALISASI PENGADAAN, KAPABILITAS ANALISA DATA INTERNAL, DAN KAPABILITAS ANALISA DATA EKSTERNAL TERHADAP KINERJA RANTAI PASOK
DOI:
https://doi.org/10.31539/costing.v7i6.13675Keywords:
Kapabilitas Digitalisasi Pengadaan, Kapabilitas Analisa Data Internal, Dan Kapabilitas Analisa Data Eksternal, Kinerja Rantai PasokAbstract
Penelitian ini bertujuan untuk menganalisis pengaruh Kapabilitas Analisis Data Eksternal, Kapabilitas Digitalisasi Pengadaan, dan Kapabilitas Analisis Data Internal terhadap Kinerja Rantai Pasok. Penelitian dilakukan terhadap 195 responden yang bekerja di perusahaan manufaktur penyedia komponen panel listrik dan perawatan transformator di Cikarang. Hasil penelitian menunjukkan bahwa Kapabilitas Analisis Data Eksternal, Kapabilitas Digitalisasi Pengadaan, dan Kapabilitas Analisis Data Internal secara positif memengaruhi Kinerja Rantai Pasok. Perusahaan yang berhasil menerapkan Kapabilitas Analisis Data Eksternal, Digitalisasi Pengadaan, dan Analisis Data Internal kepada seluruh karyawannya menunjukkan peningkatan signifikan pada Kinerja Rantai Pasok. Selain itu, Kapabilitas Analisis Data Eksternal juga memiliki pengaruh positif terhadap Kapabilitas Digitalisasi Pengadaan, demikian pula dengan Kapabilitas Analisis Data Internal yang berpengaruh positif terhadap Kapabilitas Digitalisasi Pengadaan. Penelitian ini memberikan kontribusi dalam pemahaman tentang pentingnya kapabilitas analisis data dan digitalisasi dalam meningkatkan efisiensi dan efektivitas rantai pasok di industri manufaktur.
References
AL-Khatib, A. W., & Ramayah, T. (2023). Big data analytics capabilities and supply chain performance: testing a moderated mediation model using partial least squares approach. Business Process Management Journal, 29(2), 393–412. https://doi.org/10.1108/BPMJ-04-2022-0179
Anand, N., & Grover, N. (2015). Measuring retail supply chain performance. Benchmarking: An International Journal, 22(1), 135–166. https://doi.org/10.1108/BIJ-05-2012-0034
Bangun, R., Ahrisa Putri, D., Abidin, Z., Dara Lufika, R., Sekarningtyas, H., Purwanda, E., Sofyan, H., Nurmala Sari, P., Arfawi Kurdhi, N., Faza, I., Djati Satmoko, N., Ganda Sukmaya, S., Agung Dermawan, A., & Akmarul Putera, D. (2023). MANAJEMEN RANTAI PASOK (Sukmaya Syahrul Ganda, Ed.). WIDINA BHAKTI PERSADA BANDUNG. www.freepik.com
Bhatti, S. H., Awan, U., Shamim, S., Khan, Z., Akhtar, P., & Balta, M. E. (2022). The Role of Big Data Analytics in Manufacturing Agility and Performance: Moderation–Mediation Analysis of Organizational Creativity and of the Involvement of Customers as Data Analysts. British Journal of Management, 33(3), 1200–1220.
Bienhaus, F., & Haddud, A. (2018). Procurement 4.0: factors influencing the digitisation of procurement and supply chains. Business Process Management Journal, 24(4), 965–984. https://doi.org/10.1108/BPMJ-06-2017-0139
Cai, C., Song, B., Xue, P., Wei, Q., Yan, C., & Shi, Y. (2016). A novel near α-Ti alloy prepared by hot isostatic pressing: Microstructure evolution mechanism and high temperature tensile properties. Materials & Design, 106, 371–379. https://doi.org/10.1016/j.matdes.2016.05.092
Chae, B. (Kevin), Olson, D., & Sheu, C. (2014). The impact of supply chain analytics on operational performance: a resource-based view. International Journal of Production Research, 52(16), 4695–4710. https://doi.org/10.1080/00207543.2013.861616
Chang, S. E., Chen, Y.-C., & Lu, M.-F. (2019). Supply chain re-engineering using blockchain technology: A case of smart contract based tracking process. Technological Forecasting and Social Change, 144, 1–11. https://doi.org/10.1016/j.techfore.2019.03.015
Chang, W., Ellinger, A. E., Kim, K. (Kate), & Franke, G. R. (2016). Supply chain integration and firm financial performance: A meta-analysis of positional advantage mediation and moderating factors. European Management Journal, 34(3), 282–295. https://doi.org/10.1016/j.emj.2015.11.008
Côrte-Real, N., Ruivo, P., & Oliveira, T. (2020). Leveraging internet of things and big data analytics initiatives in European and American firms: Is data quality a way to extract business value? Information & Management, 57(1), 103141. https://doi.org/10.1016/j.im.2019.01.003
Côrte-Real, N., Ruivo, P., Oliveira, T., & Popovič, A. (2019a). Unlocking the drivers of big data analytics value in firms. Journal of Business Research, 97, 160–173. https://doi.org/10.1016/j.jbusres.2018.12.072
Côrte-Real, N., Ruivo, P., Oliveira, T., & Popovič, A. (2019b). Unlocking the drivers of big data analytics value in firms. Journal of Business Research, 97, 160–173. https://doi.org/10.1016/j.jbusres.2018.12.072
Dubey, R., Gunasekaran, A., Childe, S. J., Fosso Wamba, S., Roubaud, D., & Foropon, C. (2021). Empirical investigation of data analytics capability and organizational flexibility as complements to supply chain resilience. International Journal of Production Research, 59(1), 110–128. https://doi.org/10.1080/00207543.2019.1582820
Dubey, R., Jeble, S., Childe, S. J., Papadopoulos, T., Roubaud, D., & Prakash, A. (2018). Impact of big data and predictive analytics capability on supply chain sustainability. The International Journal of Logistics Management, 29(2), 513–538. https://doi.org/10.1108/IJLM-05-2017-0134
Emon, M. M. H., Khan, T., & Siam, S. A. J. (2024). Quantifying the influence of supplier relationship management and supply chain performance. Brazilian Journal of Operations & Production Management, 21(2), 2015. https://doi.org/10.14488/BJOPM.2015.2024
Fatorachian, H., & Kazemi, H. (2021). Impact of Industry 4.0 on supply chain performance. Production Planning & Control, 32(1), 63–81. https://doi.org/10.1080/09537287.2020.1712487
Fernando, Y., Chidambaram, R. R. M., & Wahyuni-TD, I. S. (2018). The impact of Big Data analytics and data security practices on service supply chain performance. Benchmarking: An International Journal, 25(9), 4009–4034. https://doi.org/10.1108/BIJ-07-2017-0194
Fonseca, T., de Faria, P., & Lima, F. (2019). Human capital and innovation: the importance of the optimal organizational task structure. Research Policy, 48(3), 616–627. https://doi.org/10.1016/j.respol.2018.10.010
Fosso Wamba, S., & Akter, S. (2015). Big Data Analytics for Supply Chain Management: A Literature Review and Research Agenda (pp. 61–72). https://doi.org/10.1007/978-3-319-24626-0_5
Fosso-Wamba, S. T., Gunasekaran, A., Dubey, R., Altay, N., & Childe, S. J. (2017). The role of Big Data in explaining disaster resilience in supply chains for sustainability. Journal of Cleaner Production, 142, 1108–1118. https://doi.org/10.1016/j.jclepro.2016.03.059
Ganbold, O., Matsui, Y., & Rotaru, K. (2021). Effect of information technology-enabled supply chain integration on firm’s operational performance. Journal of Enterprise Information Management, 34(3), 948–989. https://doi.org/10.1108/JEIM-10-2019-0332
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). MULTIVARIATE DATA ANALYSIS EIGHTH EDITION. www.cengage.com/highered
Hallikas, J., Immonen, M., & Brax, S. (2021). Digitalizing procurement: the impact of data analytics on supply chain performance. Supply Chain Management, 26(5), 629–646. https://doi.org/10.1108/SCM-05-2020-0201
Han, Y., & Li, D. (2015). Effects of intellectual capital on innovative performance. Management Decision, 53(1), 40–56. https://doi.org/10.1108/MD-08-2013-0411
Ilhan, N., & Rahim, Md. M. (2020). Understanding Digital Transformation of Procurement Through E-Procurement Systems Implementation (pp. 182–206). https://doi.org/10.4018/978-1-7998-2799-3.ch010
Irfan, M., Wang, M., & Akhtar, N. (2019). Enabling supply chain agility through process integration and supply flexibility. Asia Pacific Journal of Marketing and Logistics, 32(2), 519–547. https://doi.org/10.1108/APJML-03-2019-0122
Janssen, M., van der Voort, H., & Wahyudi, A. (2017). Factors influencing big data decision-making quality. Journal of Business Research, 70, 338–345. https://doi.org/10.1016/j.jbusres.2016.08.007
Jha, A. K., Agi, M. A. N., & Ngai, E. W. T. (2020). A note on big data analytics capability development in supply chain. Decision Support Systems, 138, 113382. https://doi.org/10.1016/j.dss.2020.113382
Jr, J. F. H., Black, W. C., Babin, B. J., Anderson, R. E., Black, W. C., & Anderson, R. E. (2019). Multivariate Data Analysis. https://doi.org/10.1002/9781119409137.ch4
Kalaitzi, D., & Tsolakis, N. (2022). Supply chain analytics adoption: Determinants and impacts on organisational performance and competitive advantage. International Journal of Production Economics, 248, 108466. https://doi.org/10.1016/j.ijpe.2022.108466
Karimi-Mamaghan, M., Mohammadi, M., Meyer, P., Karimi-Mamaghan, A. M., & Talbi, E.-G. (2022). Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: A state-of-the-art. European Journal of Operational Research, 296(2), 393–422.
Kou, T.-C., Chiang, C.-T., & Chiang, A.-H. (2018). Effects of IT-based supply chains on new product development activities and the performance of computer and communication electronics manufacturers. Journal of Business & Industrial Marketing, 33(7), 869–882. https://doi.org/10.1108/JBIM-11-2016-0269
Lee, I., & Mangalaraj, G. (2022). Big Data Analytics in Supply Chain Management: A Systematic Literature Review and Research Directions. Big Data and Cognitive Computing, 6(1), 17. https://doi.org/10.3390/bdcc6010017
Lorentz, H., Aminoff, A., Kaipia, R., & Srai, J. S. (2021). Structuring the Phenomenon of Procurement Digitalisation: Contexts, Interventions and Mechanisms. International Journal of Operations and Production Management, 41(2), 157–192. https://doi.org/10.1108/IJOPM-03-2020-0150
Lukman. (2021). Supply Chain Management (Payangan Okto R., Ed.). CV. CAHAYA BINTANG CEMERLANG.
Madzimure, J., Mafini, C., & Dhurup, M. (2020). E-procurement, supplier integration and supply chain performance in small and medium enterprises in South Africa. South African Journal of Business Management, 51(1). https://doi.org/10.4102/sajbm.v51i1.1838
Mandal, S. (2018). Exploring the influence of big data analytics management capabilities on sustainable tourism supply chain performance: the moderating role of technology orientation. Journal of Travel & Tourism Marketing, 35(8), 1104–1118. https://doi.org/10.1080/10548408.2018.1476302
Martin, K., Sanders, E., & Scalan, G. (2014). The potential impact of COSO internal control integrated framework revision on internal audit structured SOX work programs. Research in Accounting Regulation, 26(1), 110–117. https://doi.org/10.1016/j.racreg.2014.02.012
Michael E. Porter and James E. Heppelmann. (2014). How Smart, REPRINT R1411C Connected Products Are Transforming Competition: Vol. Vol. 92 No.11.
Mikalef, P., Krogstie, J., Pappas, I. O., & Pavlou, P. (2020). Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities. Information & Management, 57(2), 103169. https://doi.org/10.1016/j.im.2019.05.004
Mishra, D., Gunasekaran, A., Papadopoulos, T., & Childe, S. J. (2018). Big Data and supply chain management: a review and bibliometric analysis. Annals of Operations Research, 270(1–2), 313–336. https://doi.org/10.1007/s10479-016-2236-y
Nasiri, M., Ukko, J., Saunila, M., & Rantala, T. (2020). Managing the digital supply chain:The role of smart technologies. Technovation, 96–97, 102121. https://doi.org/10.1016/j.technovation.2020.102121
Parida, V., Lenka, S., & Wincent, J. (2017). Digitalization Capabilities as Enablers of Value Co‐Creation in Servitizing Firms. Psychology & Marketing, 34(1), 92–100. https://doi.org/10.1002/mar.20975
Pattanayak, D., & Punyatoya, P. (2019). Effect of supply chain technology internalization and e-procurement on supply chain performance. Business Process Management Journal, 26(6), 1425–1442. https://doi.org/10.1108/BPMJ-04-2019-0150
Puspa Widya Anitana. (2021, May). Digitalisasi Jadi Elemen Penting Rantai Pasok Global. Bisnis.com. https://ekonomi.bisnis.com/read/20210530/98/1399394/digitalisasi-jadi-elemen-penting-rantai-pasok-global
Rahardjo, K., Rakhmawati, A., & Kusumawati, A. (2019). Faktor Anteseden dan Konsekuensi Green Supply Chain Management. JURNAL SISTEM INFORMASI BISNIS, 9(1), 1. https://doi.org/10.21456/vol9iss1pp1-8
Sabharwal, R., & Miah, S. J. (2021). A new theoretical understanding of big data analytics capabilities in organizations: a thematic analysis. In Journal of Big Data (Vol. 8, Issue 1). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1186/s40537-021-00543-6
Schoenherr, T., & Speier‐Pero, C. (2015). Data Science, Predictive Analytics, and Big Data in Supply Chain Management: Current State and Future Potential. Journal of Business Logistics, 36(1), 120–132. https://doi.org/10.1111/jbl.12082
Seuring, S., & Kache, F. (2017). Challenges and opportunities of digital information at the intersection of Big Data Analytics and supply chain management. International Journal of Operations & Production Management, 37(1), 10–36. https://doi.org/10.1108/IJOPM-02-2015-0078
Seyedan, M., & Mafakheri, F. (2020). Predictive big data analytics for supply chain demand forecasting: methods, applications, and research opportunities. Journal of Big Data, 7(1), 53. https://doi.org/10.1186/s40537-020-00329-2
Seyedghorban, Z., Samson, D., & Tahernejad, H. (2020). Digitalization opportunities for the procurement function: pathways to maturity. International Journal of Operations & Production Management, 40(11), 1685–1693. https://doi.org/10.1108/IJOPM-04-2020-0214
Shafiq, A., Ahmed, M. U., & Mahmoodi, F. (2020). Impact of supply chain analytics and customer pressure for ethical conduct on socially responsible practices and performance: An exploratory study. International Journal of Production Economics, 225, 107571. https://doi.org/10.1016/j.ijpe.2019.107571
Tan, K. H., Zhan, Y., Ji, G., Ye, F., & Chang, C. (2015). Harvesting big data to enhance supply chain innovation capabilities: An analytic infrastructure based on deduction graph. International Journal of Production Economics, 165, 223–233. https://doi.org/10.1016/j.ijpe.2014.12.034
Tempo. (2024, May 20). Supply Chain Indonesia Dorong Pemakaian AI untuk Rantai Pasok Logistik, Berikut Alasannya | tempo.co. https://www.tempo.co/digital/supply-chain-indonesia-dorong-pemakaian-ai-untuk-rantai-pasok-logistik-berikut-alasannya--57233
Tiwari, S., Wee, H. M., & Daryanto, Y. (2018). Big data analytics in supply chain management between 2010 and 2016: Insights to industries. Computers & Industrial Engineering, 115, 319–330. https://doi.org/10.1016/j.cie.2017.11.017
Tortorella Guilherme Luz. (2019). Erratum. Supply Chain Management: An International Journal, 24(2), 301–301. https://doi.org/10.1108/SCM-01-2018-0041
Waller, M. A., & Fawcett, S. E. (2013). Data Science, Predictive Analytics, and Big Data: A Revolution that Will Transform Supply Chain Design and Management. In Journal of Business Logistics (Vol. 34, Issue 2). https://ssrn.com/abstract=2279482
Wamba, S. F., Dubey, R., Gunasekaran, A., & Akter, S. (2020). The performance effects of big data analytics and supply chain ambidexterity: The moderating effect of environmental dynamism. International Journal of Production Economics, 222, 107498. https://doi.org/10.1016/j.ijpe.2019.09.019
Wang, G., Gunasekaran, A., Ngai, E. W. T., & Papadopoulos, T. (2016). Big data analytics in logistics and supply chain management: Certain investigations for research and applications. International Journal of Production Economics, 176, 98–110. https://doi.org/10.1016/j.ijpe.2016.03.014
Wang, Y., Kung, L., Wang, W. Y. C., & Cegielski, C. G. (2018). An integrated big data analytics-enabled transformation model: Application to health care. Information & Management, 55(1), 64–79. https://doi.org/10.1016/j.im.2017.04.001
Xiang, L. Y., Hwang, H. J., Kim, H. K., Mahmood, M., & Dawi, N. M. (2021). The Use of Big Data Analytics to Improve the Supply Chain Performance in Logistics Industry (pp. 17–31). https://doi.org/10.1007/978-3-030-64773-5_2
Xu, Z., Gao, X., Wang, Z., & Fan, J. (2019). Big Data-Based Evaluation of Urban Parks: A Chinese Case Study. Sustainability, 11(7), 2125. https://doi.org/10.3390/su11072125
Yang, Y., See-To, E. W. K., & Papagiannidis, S. (2020). You have not been archiving emails for no reason! Using big data analytics to cluster B2B interest in products and services and link clusters to financial performance. Industrial Marketing Management, 86, 16–29. https://doi.org/10.1016/j.indmarman.2019.01.016
Zhang, H., & Okoroafo, S. C. (2015). Third-Party Logistics (3PL) and Supply Chain Performance in the Chinese Market: A Conceptual Framework. Engineering Management Research, 4(1). https://doi.org/10.5539/emr.v4n1p38
Zhu, Z., Zhao, J., Tang, X., & Zhang, Y. (2015). Leveraging e-business process for business value: A layered structure perspective. Information & Management, 52(6), 679–691. https://doi.org/10.1016/j.im.2015.05.004