ANALISIS PREFERENSI PELANGGAN UNTUK MENDUKUNG STRATEGI RETENSI DI INDUSTRI E-COMMERCE INDONESIA: PENDEKATAN CHOICE-BASED CONJOINT

Authors

  • Sarah Lasroma Manalu Institut Teknologi Bandung
  • Nila Armelia Windasari Institut Teknologi Bandung

DOI:

https://doi.org/10.31539/tr4xvz27

Keywords:

Analisis Conjoint, Retensi Pelanggan, E-Commerce, Preferensi Konsumen, Sensitivitas Harga

Abstract

Industri e-commerce Indonesia masih menghadapi tantangan terhadap retensi pelanggan meskipun gencar menawarkan diskon, cashback, BNPL, dan gratis ongkir. Penelitian ini mengidentifikasi kombinasi optimal insentif promosi, metode pembayaran, dan opsi pengiriman untuk mendukung retensi dengan pendekatan Choice-Based Conjoint (CBC) terhadap 297 responden usia 26-35 tahun. Lima atribut diuji yaitu cashback, diskon, potongan ongkir, metode pembayaran (BNPL, COD, e-wallet), dan jenis pengiriman (instan, sameday, standar). Hasil menunjukkan metode pembayaran paling berpengaruh (45,1%), diikuti diskon (28,2%), sedangkan cashback dan ongkir berperan pendukung. E-wallet dan diskon 10% menunjukan preferensi tertinggi, sedangkan pengiriman instan terbukti paling efektif apabila dipadukan dengan insentif cashback dalam jumlah sedang. Pemberian insentif secara maksimal terbukti tidak efisien, sedangkan pendekatan bundling berbasis utilitas yang disesuaikan dengan sensitivitas harga dan responsivitas segmen menunjukkan hasil yang lebih baik. Studi ini mengusulkan tiga strategi utama yaitu personalisasi berdasarkan segmen, insentif bertingkat, dan penggabungan berbasis pertukaran nilai (trade-off). Temuan ini memberikan wawasan aplikatif dan berbasis data untuk strategi retensi pelanggan yang berfokus pada ROI di tengah ketatnya persaingan pasar digital Indonesia.

 

References

[1] Becker, G. S. (1976). The economic approach to human behavior. University of Chicago Press.

[2] Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 318–340. https://doi.org/10.2307/249008

[3] Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–291. https://doi.org/10.2307/1914185

[4] Green, P. E., & Srinivasan, V. (1978). Conjoint analysis in consumer research: Issues and outlook. Journal of Consumer Research, 5(2), 103–123. https://doi.org/10.1086/208721

[5] Ben-Akiva, M., & Lerman, S. R. (1985). Discrete choice analysis: Theory and application to travel demand. MIT Press.

[6] Zhang, X., & Li, Y. (2020). The effect of permanent product discounts and order coupons on purchase incidence, purchase quantity, and spending. Journal of Retailing, 96(4), 580–597. https://doi.org/10.1016/j.jretai.2020.11.007

[7] Habenstein, D., Kirchhoff, K., & Schlesinger, T. (2021). Club fan shop or not? A conjoint analysis of online jersey purchase behavior. Sport, Business and Management: An International Journal, 11(1), 54–71. https://doi.org/10.1108/SBM-03-2020-0026

[8] Kumar, A., Salo, J., & Bezawada, R. (2024). The effects of buy now, pay later (BNPL) on customers’ online purchase behavior. Journal of Retailing, 100(4), 602–617. https://doi.org/10.1016/j.jretai.2024.09.004

[9] Mishra, A., & Dutta, P. (2024). Return management in e-commerce firms: A machine learning approach to predict product returns and examine variables influencing returns. Journal of Cleaner Production, 477, 143802. https://doi.org/10.1016/j.jclepro.2024.143802

[10] Parashar, S., Gupta, V., Sharma, A., & Bandyopadhyay, S. (2023). E-wallet adoption and consumer retention in post-COVID markets. Journal of Retailing and Consumer Services, 70, 102221. https://doi.org/10.1016/j.jretconser.2022.102221 (Add DOI if available)

[11] Statista. (2024). Digital & trends: E-commerce in Indonesia. https://www.statista.com/study/60342/e-commerce-in-indonesia/

[12] Badan Pusat Statistik. (2025). Statistik e-commerce Indonesia 2023. https://www.bps.go.id

Downloads

Published

2025-07-20