OPTIMIZING LEAD CONVERSION RATE THROUGH CONSUMER BEHAVIOUR PRINCIPLES ANALYSIS: A CASE STUDY IN THE LANGUAGE SERVICES PROVIDER

Authors

  • Dicky Priyana Institut Teknologi Bandung

DOI:

https://doi.org/10.31539/fcvebx56

Keywords:

Ekonomi Perilaku, Kerangka Kerja AARRR, Pengkondisian Operan, Teori Percobaan, Konversi Prospek, CRM, Optimasi Penjualan, Mediamaz

Abstract

konversi klien sering terhambat oleh upaya pemasaran dan penjualan yang kurang efektif. Mediamaz juga menghadapi tantangan ini. Selama tahun 2024, Mediamaz memiliki tingkat konversi rata-rata yang sangat rendah, yaitu 23%. Hal ini disebabkan oleh koordinasi pemasaran dan penjualan yang buruk, serta prosedur tindak lanjut yang kurang memadai. Penyebab lain adalah ketidakhadiran sistem CRM. Untuk meningkatkan konversi prospek, studi ini menggunakan analisis perilaku konsumen dan paradigma AARRR. Para peneliti menggunakan skala Likert untuk mengukur persepsi pelanggan dan memanfaatkan teknik axial dan tematik NVivo untuk mengkategorikan data survei kualitatif dan informasi calon klien. Untuk menentukan variabel yang memperkuat dan menghambat pembelian, para peneliti menggunakan Kondisi Operan dan Teori Mencoba. Hasil menunjukkan bahwa tahap Aktivasi (MOFU) mengalami penurunan paling signifikan, terutama akibat kurangnya sinyal penguatan perilaku, seperti tindak lanjut atau janji hasil. Secara internal, beban manual yang berat dan kurangnya sistem insentif mengurangi kinerja penjualan. Untuk meningkatkan kinerja konversi dan efisiensi penjualan, penelitian menyarankan penggunaan sistem CRM berbasis perilaku dan model penilaian prospek berbasis perilaku.

References

[1] Agarwal, N., & Agarwal, M. (2003). Theory of trying – Implications for marketing new-concept products.

[2] Bagozzi, R. P., & Kimmel, S. K. (1995). A comparison of leading theories for the prediction of goal-directed behaviours. British Journal of Social Psychology, 34(4), 437–461. https://doi.org/10.1111/j.2044-8309.1995.tb01076.x

[3] Bagozzi, R. P., & Warshaw, P. R. (1990). Trying to consume. Journal of Consumer Research, 17(2), 127–140. https://doi.org/10.1086/208543

[4] Bagozzi, R. P., Dholakia, U. M., & Basuroy, S. (2002). How effortful decisions get enacted: The motivating role of decision processes, desires, and anticipated emotions. Journal of Behavioral Decision Making, 16(4), 273–295. https://doi.org/10.1002/bdm.446

[5] Blair, M. E., & Shimp, T. A. (1992). Consequences of an unpleasant experience with a product: A theoretical explanation. Journal of Consumer Satisfaction, Dissatisfaction and Complaining Behavior, 5, 44–49.

[6] Broos, T. (2016). Growth hacking: Tools and techniques for building your startup.

[7] Chaubey, A. (2019). AARRR framework for growth hacking.

[8] Chen, J. (2017). Pirate metrics (AARRR) explained.

[9] Codedesign. (n.d.). Inbound marketing vs. outbound marketing: Strategies to scale your business. Retrieved from https://codedesign.org/inbound-marketing-vs-outbound-marketing-strategies-scale-your-business

[10] Ellis, S., & Brown, M. (2017). Hacking growth: How today's fastest-growing companies drive breakout success. Crown Business.

[11] Gould, S. J., Houston, F. S., & Mundt, J. (1997). Failures-to-try in consumer behavior: A critique and proposal. Advances in Consumer Research, 24, 211–216.

[12] Leone, L., Perugini, M., & Ercolani, A. P. (1999). A comparison of three models of attitude–behavior relationships in the studying behavior domain. European Journal of Social Psychology, 29(2–3), 161–189.

[13] Nimdzi Insights. (2024). Global language industry growth projection. Nimdzi. Retrieved from https://www.nimdzi.com/

[14] Nord, W. R., & Peter, J. P. (1980). A behavior modification perspective on marketing. Journal of Marketing, 44(2), 36–47. https://doi.org/10.1177/002224298004400206

[15] Norman, P., & Conner, M. (1996). The role of social cognition models in predicting health behaviours: Future directions. In M. Conner & P. Norman (Eds.), Predicting health behaviour (pp. 197–225). Open University Press.

[16] Pearson. (2019). Consumer behavior: Buying, having, and being (13th ed.). Pearson Education.

[17] Perotti, V. J. (2005). An exploratory study of operant conditioning theory as a predictor of online product selection. The Journal of Business Inquiry, 4(1), 35–43.

[18] Peter, J. P., & Nord, W. R. (1982). A clarification and extension of operant conditioning principles in marketing. Journal of Marketing, 46(4), 102–107. https://doi.org/10.1177/002224298204600409.

[19] Roopa, S., & Rani, M. S. (2012). Questionnaire designing for a survey. Journal of Indian Orthodontic Society, 46(4), 273–277. https://doi.org/10.5005/jp-journals-10021-1104

[20] Rothschild, M. L., & Gaidis, W. C. (1981). Behavioral learning theory: Its relevance to marketing and promotions. Journal of Marketing, 45(2), 70–78. https://doi.org/10.1177/002224298104500207

[21] Schiffman, L. G., & Kanuk, L. L. (2007). Consumer behavior (9th ed.). Prentice Hall.

[22] Sekaran, U., & Bougie, R. (2016). Research methods for business: A skill-building approach (7th ed.). Wiley.

[23] Shikalepo, E. E. (2020). The importance of a conceptual framework in research. Educational Research and Reviews, 15(11), 593–601. https://doi.org/10.5897/ERR2020.4034

[24] SlideEgg. (n.d.). AARRR funnel PowerPoint template. Retrieved from https://www.slideegg.com/aarrr-funnel

[25] Srivastava, P. (2021). Digital marketing strategies for scaling businesses.

[26] Widrick, S. M., & Fram, E. H. (1983). The effect of positive and negative reinforcement on consumer behavior. Journal of the Academy of Marketing Science, 11(4), 325–339.

[27] Widrick, S. M., & Hibbs, J. M. (1985). Positive reinforcement, involvement, and the consumer search process. Journal of the Academy of Marketing Science, 13(4), 331–345.

[28] Zhang, H. (2021). Application of AARRR model in marketing.

Downloads

Published

2025-12-03