ANALISIS PENGUMPULAN BEHAVIOR-BASED SAFETY OBSERVATION (BBSO) DAN LOST TIME INJURY (LTI) STUDI KASUS: DI PROYEK SUMBAWA LIQUEFIED NATURAL GAS (LNG) TERMINAL & REGASIFICATION FACILITY
DOI:
https://doi.org/10.31539/wqqejn42Keywords:
Behavior-Based Safety Observation (BBSO), Lost Time Injury (LTI), PLS-SEM, Proyek EPC, Keselamatan KerjaAbstract
Penelitian ini menelaah hubungan antara implementasi Behavior-Based Safety Observation (BBSO) dan kejadian Lost Time Injury (LTI) pada proyek EPC sektor energi, dengan studi kasus Sumbawa LNG Terminal & Regasification (SLTR). Desain penelitian bersifat kuantitatif-eksplanatori (potong lintang) menggunakan PLS-SEM. Data primer diperoleh melalui kuesioner skala Likert (n = 153 responden), dilengkapi esai wawancara tertulis (n = 28) dan dokumen pendukung terbatas (rekam BBSO pra-insiden). Hasil menunjukkan bahwa kuantitas pengumpulan observasi (X1) tidak berpengaruh langsung secara signifikan terhadap kinerja keselamatan terhadap kecelakaan LTI (Y). Sebaliknya, konteks kerja (X2) dan terutama tindak lanjut observasi (X3) berpengaruh signifikan terhadap penurunan risiko kecelakaan LTI. X1 berasosiasi dengan peningkatan X2 dan X3, namun tanpa mutu isi dan tindak lanjut yang tepat, peningkatan jumlah kartu tidak bermakna bagi outcome keselamatan. Temuan kualitatif menegaskan adanya kendala pada konsistensi tindak lanjut, keterbatasan personel dedikasi, serta kecenderungan administratif dalam pelaporan. Rekomendasi mencakup penunjukan pengelola BBSO khusus, penerapan komitmen waktu dan kualitas tindak lanjut berbasis risiko, serta penguatan kualitas dokumentasi dan analisis bahaya agar observasi menjadi landasan tindakan pencegahan yang terukur.
References
Sugiyono. (2017). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung: Alfabeta.
Masia, U., & Pienaar, J. (2019). Unintended consequences of safety monitoring: A longitudinal study. Safety Science, 120, 233–240.
Geller, E. S. (2016). Applied Behavior Analysis and Occupational Safety: OBM’s Impact. Journal of Organizational Behavior Management, 36(2-3), 158–167.
Zakaria, J., Che Hassan, C. R., Hamid, M. D., & Sukadarin, E. H. (2024). The effectiveness of behavior‐based safety observation program (BSOP) in the chemical manufacturing industry. Process Safety Progress, 43(1), 52-62.
Yang, E., Kim, Y., & Rodgers, C. (2024). Effects of a behavior-based safety observation program: Promoting safe behaviors and safety climate at work. Work, 77(1), 133-145.
Geller, E. S., & Geller, K. S. (2017). Actively caring for people's safety: Cultivating a brother's/sister's keeper culture. Professional Safety, 62(04), 36–45.
Carra, S., Bottani, E., Vignali, G., Madonna, M., & Monica, L. (2024). Implementation of behavior-based safety in the workplace: A review of conceptual and empirical literature. Sustainability, 16(23), 10195.
Bird, F. E., & Germain, G. L. (2019). Practical Loss Control Leadership. International Loss Control Institute.
Alruqi, W. M., & Hallowell, M. (2019). Critical success factors for construction safety programs. Safety Science, 118, 606-621.
Creswell, J. W. (2023). Research design: Qualitative, quantitative, and mixed methods approaches (6th ed.). SAGE Publications.
Neuman, W. L. (2014). Social research methods: Qualitative and quantitative approaches (7th ed.). Pearson Education.
Babbie, E. R. (2020). The practice of social research (15th ed.). Cengage Learning.
Occupational Safety and Health Administration (OSHA). (2022). Recordkeeping Requirements. https://www.osha.gov/recordkeeping
Conklin, T. (2024). The 5 Principles of Human Performance: A Contemporary Update of the Building Blocks of Human Performance for the New View of Safety. PreAccident Media.
Cooper, M. D. (2020). Behavioral Safety: A Framework for Success. Taylor & Francis.
Krause, T. R., & Weekley, T. (2019). Safety leadership and process safety culture. Journal of Loss Prevention in the Process Industries, 57, 183–189.
Internal Project Report. (2025). Project HSSE Statistic – Sumbawa LNG Terminal & Regasification Facility. (Unpublished internal document).
Internal Project Document. (2025). Incident Register – Sumbawa LNG Terminal & Regasification Facility. (Unpublished internal document).
Choudhry, R. M., & Zahoor, H. (2016). Strengths and weaknesses of safety practices to improve safety performance in construction. Safety Science, 82, 35–44..
Indonesia Safety Center. (n.d.). Piramida Kecelakaan Kerja: Pengertian, Tujuan dan Penerapannya. Retrieved June 18, 2025, from https://indonesiasafetycenter.org/piramida-kecelakaan-kerja-pengertian-tujuan-dan-penerapannya/
Carra, G., Brown, D., & Thomas, S. (2024). Behavior-based safety observation: Empirical study in industrial application. Safety Science, 172, 106148.
Spigener, J., Li, H., & Hill, M. (2022). Advancing safety culture through effective observations: Bridging the gap in BBSO quality. Journal of Safety Research, 80, 212–221
Yang, X., Li, S., & Zhang, W. (2024). Behavior-based safety observation reporting and its impact on safety performance: A longitudinal study in manufacturing. Journal of Occupational Health Psychology, 29(1), 34–47.
Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20, 277–319.
Memon, M. A., Ting, H., Cheah, J. H., Thurasamy, R., Chuah, F., & Cham, T. H. (2017). Sample size for survey research: Review and recommendations. Journal of Applied Structural Equation Modeling, 1(1), 1–20.
Sekaran, U., & Bougie, R. (2016). Research methods for business: A skill-building approach (7th ed.). Chichester: Wiley.
Wold, H. (1985). Partial least squares. In S. Kotz & N. L. Johnson (Eds.), Encyclopedia of Statistical Sciences (Vol. 6, pp. 581–591). New York: Wiley.
Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152.
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis (7th ed.). Pearson Prentice Hall.
Sarstedt, M., Ringle, C. M., & Hair, J. F. (2017). Partial least squares structural equation modeling. In H. Latan & R. Noonan (Eds.), Partial least squares path modeling: Basic concepts, methodological issues and applications (pp. 1–40). Cham: Springer.
Henseler, J., Ringle, C. M., & Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20, 277–319.
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based structural equation modeling. Journal of the Academy of Marketing Science, 43(1), 115–135.
Urbach, N., & Ahlemann, F. (2010). Structural equation modeling in information systems research using partial least squares. Journal of Information Technology Theory and Application, 11(2), 5–40.
Wong, K. K.-K. (2013). Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Marketing Bulletin, 24(1), 1–32.
Yamin, S., & Kurniawan, H. (2011). Generasi Baru Mengolah Data Penelitian dengan Partial Least Square Path Modeling (PLS-PM). Jakarta: Salemba Infotek.
Ghozali, I., & Latan, H. (2015). Partial Least Squares: Konsep, teknik, dan aplikasi menggunakan program SmartPLS 3.0. Semarang: Badan Penerbit Universitas Diponegoro.
Hair, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2017). Advanced Issues in Partial Least Squares Structural Equation Modeling. Sage.
Creswell, J. W., & Creswell, J. D. (2018). Research design: Qualitative, quantitative, and mixed methods approaches (5th ed.). SAGE.
Etikan, I., Musa, S. A., & Alkassim, R. S. (2016). Comparison of convenience sampling and purposive sampling. American Journal of Theoretical and Applied Statistics, 5(1), 1–4. https://doi.org/10.11648/j.ajtas.20160501.11
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2022). A primer on partial least squares structural equation modeling (PLS-SEM) (3rd ed.). SAGE.
Israel, G. D. (1992/2013). Determining sample size. University of Florida, IFAS Extension.
Kock, N., & Hadaya, P. (2018). Minimum sample size estimation in PLS-SEM: The inverse square root and gamma-exponential methods. Information Systems Journal, 28(1), 227–261.
Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16(3), 297–334.
Geisser, S. (1975). The Predictive Sample Reuse Method with Applications. Journal of the American Statistical Association, 70(350), 320–328.
Hair, J. F., Risher, J. J., Sarstedt, M., & Ringle, C. M. (2019). When to use and how to report PLS-SEM results. European Business Review, 31(1), 2–24.
Shmueli, G., Ray, S., Velasquez Estrada, J. M., & Chatla, S. B. (2016). The elephant in the room: Evaluating the predictive performance of PLS models. Journal of Business Research, 69(10), 4552–4564.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Affan Suryoatmojo, Kholil Kholil, Tatan Sukwika

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

