MODEL PENGEMBANGAN SKALABILITAS UMKM BERBASIS KECERDASAN BUATAN: PERAN KEPEMIMPINAN BERKELANJUTAN, KAPASITAS ABSORPSI, DAN INOVASI

Authors

  • Sofyan Ashari Nur Universitas Tidar
  • Hanung Eka Atmaja Universitas Tidar

DOI:

https://doi.org/10.31539/6hzxg603

Keywords:

Skalabilitas Umkm, Kepemimpinan Berkelanjutan, Kapasitas Absorpsi, Kapasitas Inovasi, Adopsi Kecerdasan Buatan.

Abstract

Skalabilitas usaha mikro masih menjadi persoalan mendasar dalam pembangunan ekonomi, khususnya di tengah percepatan transformasi digital dan meningkatnya dorongan pemanfaatan kecerdasan buatan. Banyak UMKM belum mampu mengelola pertumbuhan secara berkelanjutan karena keterbatasan kepemimpinan, kapasitas pembelajaran organisasi, serta kesiapan adopsi teknologi. Kondisi ini menuntut pemahaman yang lebih komprehensif mengenai mekanisme internal yang memungkinkan usaha mikro berkembang secara terstruktur dan adaptif. Penelitian ini bertujuan untuk menganalisis peran kepemimpinan berkelanjutan, kapasitas absorpsi, kapasitas inovasi, serta adopsi kecerdasan buatan dalam mendorong skalabilitas UMKM, sekaligus merumuskan model pengembangan usaha mikro berbasis kecerdasan buatan. Penelitian ini menggunakan pendekatan mixed methods dengan desain explanatory sequential. Tahap kuantitatif dilakukan melalui survei terhadap UMKM di Provinsi Jawa Barat, Jawa Tengah, Jawa Timur, dan DKI Jakarta. Populasi penelitian adalah UMKM aktif, dengan teknik proportionate stratified random sampling dan jumlah sampel sebanyak 385 UMKM. Tahap kualitatif dilakukan melalui wawancara mendalam untuk memperkuat interpretasi temuan kuantitatif. Analisis data kuantitatif menggunakan Partial Least Squares–Structural Equation Modeling (PLS-SEM), sedangkan data kualitatif dianalisis melalui proses pengodean bertahap. Hasil penelitian menunjukkan bahwa kepemimpinan berkelanjutan dan kapasitas absorpsi merupakan fondasi utama dalam meningkatkan skalabilitas UMKM. Kapasitas inovasi tidak secara langsung mendorong skalabilitas, namun memberikan kontribusi yang lebih kuat ketika diperkuat oleh adopsi kecerdasan buatan. Temuan ini menegaskan bahwa kecerdasan buatan berperan sebagai penguat selektif, bukan pengganti kepemimpinan dan pembelajaran organisasi. Penelitian ini memberikan implikasi teoretis bagi pengembangan literatur UMKM dan implikasi praktis bagi perancang kebijakan serta pendamping UMKM dalam merancang strategi transformasi digital yang berkelanjutan.

References

Aghion, P., Jones, B. F., & Jones, C. I. (2019). Artificial intelligence and economic growth. In A. Agrawal, J. Gans, & A. Goldfarb (Eds.), The economics of artificial intelligence: An agenda (pp. 237–282). University of Chicago Press. https://doi.org/10.7208/chicago/9780226613475.001.0001

Alsheibani, S., Cheung, Y., & Messom, C. (2018). Artificial intelligence adoption: AI-readiness at firm-level. Proceedings of the International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), 1–6. https://doi.org/10.1109/3ICT.2018.8855790

Ardito, L., Petruzzelli, A. M., Panniello, U., & Garavelli, A. C. (2019). Towards Industry 4.0: Mapping digital technologies for supply chain management–marketing integration. Business Process Management Journal, 25(2), 323–346. https://doi.org/10.1108/BPMJ-04-2017-0088

Bălănescu, M., Munteanu, D., & Pînzaru, F. (2025). Artificial intelligence adoption in small and medium-sized enterprises: Barriers, drivers, and implementation pathways. Journal of Small Business Management, 63(1), 1–25. https://doi.org/10.1080/00472778.2024.2331142

Brock, J. K. U., & von Wangenheim, F. (2019). Demystifying AI: What digital transformation leaders can teach you about realistic artificial intelligence. California Management Review, 61(4), 110–134. https://doi.org/10.1177/0008125619864030

Cenamor, J., Sjödin, D. R., & Parida, V. (2019). Adopting a platform approach in servitization: Leveraging digital innovation. Industrial Marketing Management, 81, 203–216. https://doi.org/10.1016/j.indmarman.2019.05.003

Chen, J., Liu, L., & Wang, Y. (2024). Digital transformation anxiety, absorptive capacity, and innovation performance. Technological Forecasting and Social Change, 196, 122859. https://doi.org/10.1016/j.techfore.2023.122859

Corbin, J., & Strauss, A. (2015). Basics of qualitative research (4th ed.). Sage.

Covin, J. G., & Wales, W. J. (2019). Crafting high-impact entrepreneurial orientation research: Some suggested guidelines. Entrepreneurship Theory and Practice, 43(1), 3–18. https://doi.org/10.1177/1042258718773181

Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). Sage.

Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods research (3rd ed.). Sage.

Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J. S., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., … Williams, M. D. (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research. International Journal of Information Management, 57, 102272. https://doi.org/10.1016/j.ijinfomgt.2020.102272

Eller, R., Alford, P., Kallmünzer, A., & Peters, M. (2024). Antecedents, consequences, and challenges of artificial intelligence adoption in SMEs: A systematic literature review. Journal of Business Research, 174, 114635. https://doi.org/10.1016/j.jbusres.2023.114635

Foss, N. J., & Saebi, T. (2017). Fifteen years of research on business model innovation: How far have we come, and where should we go? Journal of Management, 43(1), 200–227. https://doi.org/10.1177/0149206316675927

Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15–26. https://doi.org/10.1016/j.ijpe.2019.01.004

Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2019). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Sage.

Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based SEM. Journal of the Academy of Marketing Science, 43(1), 115–135.

Kraus, S., Palmer, C., Kailer, N., Kallinger, F. L., & Spitzer, J. (2019). Digital entrepreneurship: A research agenda on new business models for the digital age. International Journal of Entrepreneurial Behavior & Research, 25(2), 353–375. https://doi.org/10.1108/IJEBR-06-2018-0425

Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. Educational and Psychological Measurement, 30(3), 607–610.

Kumar, V., Rajan, B., Venkatesan, R., & Lecinski, J. (2019). Understanding the role of artificial intelligence in personalized engagement marketing. California Management Review, 61(4), 135–155. https://doi.org/10.1177/0008125619859317

Mhando, D. G., Nandonde, F. A., & Tundui, H. P. (2024). Technological absorptive capacity and e-business innovation: Evidence from small and medium enterprises. Information Technology & People, 37(2), 620–642. https://doi.org/10.1108/ITP-10-2022-0705

Mikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2020). Big data analytics and firm performance: Findings from a mixed-method approach. International Journal of Information Management, 54, 102215. https://doi.org/10.1016/j.ijinfomgt.2020.102215

Nambisan, S., Wright, M., & Feldman, M. (2019). The digital transformation of innovation and entrepreneurship. Research Policy, 48(8), 103773. https://doi.org/10.1016/j.respol.2019.03.021

OECD. (2021). The digital transformation of SMEs. OECD Publishing. https://doi.org/10.1787/bdb9256a-en

Rane, S. B., Thakker, S. V., Kant, R., & Dwivedi, Y. K. (2024). Artificial intelligence adoption in small and medium-sized enterprises: A systematic literature review and future research agenda. Journal of Business Research, 174, 114636. https://doi.org/10.1016/j.jbusres.2023.114636

Rehman, S. U., Kraus, S., Shah, S. A. A., Khanin, D., & Mahto, R. V. (2023). Analyzing the relationship between entrepreneurial orientation and performance in SMEs: The role of contextual factors. Journal of Small Business Management, 61(2), 414–442. https://doi.org/10.1080/00472778.2021.1915457

Rezaei, J., & Ortt, R. (2018). Entrepreneurial orientation and firm performance: The mediating role of strategic orientation. Journal of Small Business Management, 56(3), 448–476. https://doi.org/10.1111/jsbm.12350

Rialti, R., Zollo, L., Ferraris, A., & Alon, I. (2019). Big data analytics capabilities and performance. Technological Forecasting and Social Change, 149, 119781. https://doi.org/10.1016/j.techfore.2019.119781

Ribeiro, D., & Leitão, J. (2024). Sustainable leadership and sustainable entrepreneurship: A systematic literature review. Sustainability, 16(3), 1284. https://doi.org/10.3390/su16031284

Rodríguez, A., Ruiz-Navarro, J., & Domínguez-González, R. (2023). Innovation strategy and firm performance in SMEs. Technological Forecasting and Social Change, 189, 122329. https://doi.org/10.1016/j.techfore.2023.122329

Rosenbusch, N., Brinckmann, J., & Bausch, A. (2011). Is innovation always beneficial? Journal of Business Venturing, 26(4), 441–457. https://doi.org/10.1016/j.jbusvent.2009.12.002

Saunila, M. (2020). Innovation capability in SMEs. Journal of Innovation & Knowledge, 5(4), 260–265. https://doi.org/10.1016/j.jik.2019.11.002

Soluk, J., Kammerlander, N., & De Massis, A. (2021). Exogenous shocks and the adaptive capacity of family firms. Journal of Business Research, 123, 47–60. https://doi.org/10.1016/j.jbusres.2020.09.048

Susanto, G., & Nurmandi, A. (2023). Digital governance and MSME resilience in emerging economies. Public Administration and Policy, 26(2), 145–162. https://doi.org/10.1108/PAP-11-2022-0071

Teece, D. J. (2018). Business models and dynamic capabilities. Long Range Planning, 51(1), 40–49. https://doi.org/10.1016/j.lrp.2017.06.007

Tornatzky, L. G., & Fleischer, M. (1990). The processes of technological innovation. Lexington Books.

Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Dong, J. Q., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection and research agenda. Journal of Business Research, 122, 889–901. https://doi.org/10.1016/j.jbusres.2019.09.022

Vial, G. (2019). Understanding digital transformation. The Journal of Strategic Information Systems, 28(2), 118–144. https://doi.org/10.1016/j.jsis.2019.01.003

Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2022). Artificial intelligence, robotics, advanced technologies and human resource management. The International Journal of Human Resource Management, 33(6), 1237–1266. https://doi.org/10.1080/09585192.2020.1871398

Warner, K. S. R., & Wäger, M. (2019). Building dynamic capabilities for digital transformation. Long Range Planning, 52(3), 326–349. https://doi.org/10.1016/j.lrp.2018.12.001

Zhu, J., & Liu, W. (2020). A tale of two databases. Scientometrics, 123(1), 321–335. https://doi.org/10.1007/s11192-020-03387-8

Zott, C., Amit, R., & Massa, L. (2011). The business model. Journal of Management, 37(4), 1019–1042. https://doi.org/10.1177/0149206311406265

Downloads

Published

2025-12-16