MODEL PENGEMBANGAN SKALABILITAS UMKM BERBASIS KECERDASAN BUATAN: PERAN KEPEMIMPINAN BERKELANJUTAN, KAPASITAS ABSORPSI, DAN INOVASI
DOI:
https://doi.org/10.31539/6hzxg603Keywords:
Skalabilitas Umkm, Kepemimpinan Berkelanjutan, Kapasitas Absorpsi, Kapasitas Inovasi, Adopsi Kecerdasan Buatan.Abstract
Skalabilitas usaha mikro masih menjadi persoalan mendasar dalam pembangunan ekonomi, khususnya di tengah percepatan transformasi digital dan meningkatnya dorongan pemanfaatan kecerdasan buatan. Banyak UMKM belum mampu mengelola pertumbuhan secara berkelanjutan karena keterbatasan kepemimpinan, kapasitas pembelajaran organisasi, serta kesiapan adopsi teknologi. Kondisi ini menuntut pemahaman yang lebih komprehensif mengenai mekanisme internal yang memungkinkan usaha mikro berkembang secara terstruktur dan adaptif. Penelitian ini bertujuan untuk menganalisis peran kepemimpinan berkelanjutan, kapasitas absorpsi, kapasitas inovasi, serta adopsi kecerdasan buatan dalam mendorong skalabilitas UMKM, sekaligus merumuskan model pengembangan usaha mikro berbasis kecerdasan buatan. Penelitian ini menggunakan pendekatan mixed methods dengan desain explanatory sequential. Tahap kuantitatif dilakukan melalui survei terhadap UMKM di Provinsi Jawa Barat, Jawa Tengah, Jawa Timur, dan DKI Jakarta. Populasi penelitian adalah UMKM aktif, dengan teknik proportionate stratified random sampling dan jumlah sampel sebanyak 385 UMKM. Tahap kualitatif dilakukan melalui wawancara mendalam untuk memperkuat interpretasi temuan kuantitatif. Analisis data kuantitatif menggunakan Partial Least Squares–Structural Equation Modeling (PLS-SEM), sedangkan data kualitatif dianalisis melalui proses pengodean bertahap. Hasil penelitian menunjukkan bahwa kepemimpinan berkelanjutan dan kapasitas absorpsi merupakan fondasi utama dalam meningkatkan skalabilitas UMKM. Kapasitas inovasi tidak secara langsung mendorong skalabilitas, namun memberikan kontribusi yang lebih kuat ketika diperkuat oleh adopsi kecerdasan buatan. Temuan ini menegaskan bahwa kecerdasan buatan berperan sebagai penguat selektif, bukan pengganti kepemimpinan dan pembelajaran organisasi. Penelitian ini memberikan implikasi teoretis bagi pengembangan literatur UMKM dan implikasi praktis bagi perancang kebijakan serta pendamping UMKM dalam merancang strategi transformasi digital yang berkelanjutan.
References
Aghion, P., Jones, B. F., & Jones, C. I. (2019). Artificial intelligence and economic growth. In A. Agrawal, J. Gans, & A. Goldfarb (Eds.), The economics of artificial intelligence: An agenda (pp. 237–282). University of Chicago Press. https://doi.org/10.7208/chicago/9780226613475.001.0001
Alsheibani, S., Cheung, Y., & Messom, C. (2018). Artificial intelligence adoption: AI-readiness at firm-level. Proceedings of the International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT), 1–6. https://doi.org/10.1109/3ICT.2018.8855790
Ardito, L., Petruzzelli, A. M., Panniello, U., & Garavelli, A. C. (2019). Towards Industry 4.0: Mapping digital technologies for supply chain management–marketing integration. Business Process Management Journal, 25(2), 323–346. https://doi.org/10.1108/BPMJ-04-2017-0088
Bălănescu, M., Munteanu, D., & Pînzaru, F. (2025). Artificial intelligence adoption in small and medium-sized enterprises: Barriers, drivers, and implementation pathways. Journal of Small Business Management, 63(1), 1–25. https://doi.org/10.1080/00472778.2024.2331142
Brock, J. K. U., & von Wangenheim, F. (2019). Demystifying AI: What digital transformation leaders can teach you about realistic artificial intelligence. California Management Review, 61(4), 110–134. https://doi.org/10.1177/0008125619864030
Cenamor, J., Sjödin, D. R., & Parida, V. (2019). Adopting a platform approach in servitization: Leveraging digital innovation. Industrial Marketing Management, 81, 203–216. https://doi.org/10.1016/j.indmarman.2019.05.003
Chen, J., Liu, L., & Wang, Y. (2024). Digital transformation anxiety, absorptive capacity, and innovation performance. Technological Forecasting and Social Change, 196, 122859. https://doi.org/10.1016/j.techfore.2023.122859
Corbin, J., & Strauss, A. (2015). Basics of qualitative research (4th ed.). Sage.
Covin, J. G., & Wales, W. J. (2019). Crafting high-impact entrepreneurial orientation research: Some suggested guidelines. Entrepreneurship Theory and Practice, 43(1), 3–18. https://doi.org/10.1177/1042258718773181
Creswell, J. W. (2014). Research design: Qualitative, quantitative, and mixed methods approaches (4th ed.). Sage.
Creswell, J. W., & Plano Clark, V. L. (2018). Designing and conducting mixed methods research (3rd ed.). Sage.
Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G., Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Edwards, J. S., Eirug, A., Galanos, V., Ilavarasan, P. V., Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kronemann, B., Lal, B., Lucini, B., … Williams, M. D. (2021). Artificial intelligence (AI): Multidisciplinary perspectives on emerging challenges, opportunities, and agenda for research. International Journal of Information Management, 57, 102272. https://doi.org/10.1016/j.ijinfomgt.2020.102272
Eller, R., Alford, P., Kallmünzer, A., & Peters, M. (2024). Antecedents, consequences, and challenges of artificial intelligence adoption in SMEs: A systematic literature review. Journal of Business Research, 174, 114635. https://doi.org/10.1016/j.jbusres.2023.114635
Foss, N. J., & Saebi, T. (2017). Fifteen years of research on business model innovation: How far have we come, and where should we go? Journal of Management, 43(1), 200–227. https://doi.org/10.1177/0149206316675927
Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15–26. https://doi.org/10.1016/j.ijpe.2019.01.004
Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2019). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Sage.
Henseler, J., Ringle, C. M., & Sarstedt, M. (2015). A new criterion for assessing discriminant validity in variance-based SEM. Journal of the Academy of Marketing Science, 43(1), 115–135.
Kraus, S., Palmer, C., Kailer, N., Kallinger, F. L., & Spitzer, J. (2019). Digital entrepreneurship: A research agenda on new business models for the digital age. International Journal of Entrepreneurial Behavior & Research, 25(2), 353–375. https://doi.org/10.1108/IJEBR-06-2018-0425
Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. Educational and Psychological Measurement, 30(3), 607–610.
Kumar, V., Rajan, B., Venkatesan, R., & Lecinski, J. (2019). Understanding the role of artificial intelligence in personalized engagement marketing. California Management Review, 61(4), 135–155. https://doi.org/10.1177/0008125619859317
Mhando, D. G., Nandonde, F. A., & Tundui, H. P. (2024). Technological absorptive capacity and e-business innovation: Evidence from small and medium enterprises. Information Technology & People, 37(2), 620–642. https://doi.org/10.1108/ITP-10-2022-0705
Mikalef, P., Boura, M., Lekakos, G., & Krogstie, J. (2020). Big data analytics and firm performance: Findings from a mixed-method approach. International Journal of Information Management, 54, 102215. https://doi.org/10.1016/j.ijinfomgt.2020.102215
Nambisan, S., Wright, M., & Feldman, M. (2019). The digital transformation of innovation and entrepreneurship. Research Policy, 48(8), 103773. https://doi.org/10.1016/j.respol.2019.03.021
OECD. (2021). The digital transformation of SMEs. OECD Publishing. https://doi.org/10.1787/bdb9256a-en
Rane, S. B., Thakker, S. V., Kant, R., & Dwivedi, Y. K. (2024). Artificial intelligence adoption in small and medium-sized enterprises: A systematic literature review and future research agenda. Journal of Business Research, 174, 114636. https://doi.org/10.1016/j.jbusres.2023.114636
Rehman, S. U., Kraus, S., Shah, S. A. A., Khanin, D., & Mahto, R. V. (2023). Analyzing the relationship between entrepreneurial orientation and performance in SMEs: The role of contextual factors. Journal of Small Business Management, 61(2), 414–442. https://doi.org/10.1080/00472778.2021.1915457
Rezaei, J., & Ortt, R. (2018). Entrepreneurial orientation and firm performance: The mediating role of strategic orientation. Journal of Small Business Management, 56(3), 448–476. https://doi.org/10.1111/jsbm.12350
Rialti, R., Zollo, L., Ferraris, A., & Alon, I. (2019). Big data analytics capabilities and performance. Technological Forecasting and Social Change, 149, 119781. https://doi.org/10.1016/j.techfore.2019.119781
Ribeiro, D., & Leitão, J. (2024). Sustainable leadership and sustainable entrepreneurship: A systematic literature review. Sustainability, 16(3), 1284. https://doi.org/10.3390/su16031284
Rodríguez, A., Ruiz-Navarro, J., & Domínguez-González, R. (2023). Innovation strategy and firm performance in SMEs. Technological Forecasting and Social Change, 189, 122329. https://doi.org/10.1016/j.techfore.2023.122329
Rosenbusch, N., Brinckmann, J., & Bausch, A. (2011). Is innovation always beneficial? Journal of Business Venturing, 26(4), 441–457. https://doi.org/10.1016/j.jbusvent.2009.12.002
Saunila, M. (2020). Innovation capability in SMEs. Journal of Innovation & Knowledge, 5(4), 260–265. https://doi.org/10.1016/j.jik.2019.11.002
Soluk, J., Kammerlander, N., & De Massis, A. (2021). Exogenous shocks and the adaptive capacity of family firms. Journal of Business Research, 123, 47–60. https://doi.org/10.1016/j.jbusres.2020.09.048
Susanto, G., & Nurmandi, A. (2023). Digital governance and MSME resilience in emerging economies. Public Administration and Policy, 26(2), 145–162. https://doi.org/10.1108/PAP-11-2022-0071
Teece, D. J. (2018). Business models and dynamic capabilities. Long Range Planning, 51(1), 40–49. https://doi.org/10.1016/j.lrp.2017.06.007
Tornatzky, L. G., & Fleischer, M. (1990). The processes of technological innovation. Lexington Books.
Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Dong, J. Q., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection and research agenda. Journal of Business Research, 122, 889–901. https://doi.org/10.1016/j.jbusres.2019.09.022
Vial, G. (2019). Understanding digital transformation. The Journal of Strategic Information Systems, 28(2), 118–144. https://doi.org/10.1016/j.jsis.2019.01.003
Vrontis, D., Christofi, M., Pereira, V., Tarba, S., Makrides, A., & Trichina, E. (2022). Artificial intelligence, robotics, advanced technologies and human resource management. The International Journal of Human Resource Management, 33(6), 1237–1266. https://doi.org/10.1080/09585192.2020.1871398
Warner, K. S. R., & Wäger, M. (2019). Building dynamic capabilities for digital transformation. Long Range Planning, 52(3), 326–349. https://doi.org/10.1016/j.lrp.2018.12.001
Zhu, J., & Liu, W. (2020). A tale of two databases. Scientometrics, 123(1), 321–335. https://doi.org/10.1007/s11192-020-03387-8
Zott, C., Amit, R., & Massa, L. (2011). The business model. Journal of Management, 37(4), 1019–1042. https://doi.org/10.1177/0149206311406265
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Sofyan Ashari Nur, Hanung Eka Atmaja

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

