ANALISIS PENILAIAN RISIKO PADA LINI PRODUKSI SERAT OPTIK MENGUNGGAKAN HAZARD IDENTIFICATION RISK ASSESSMENT AND DETERMINING CONTROL (HIRADC)

THE ANALYSIS OF RISK ASSESSMENT ON FIBER OPTIC PRODUCTION LINE USING THE HAZARD IDENTIFICATION RISK ASSESSMENT AND DETERMINING CONTROL (HIRADC)

Nina Tania Lestari
Product Design Program, Industrial Engineering Department, BINUS ASO School of Engineering, Bina Nusantara University, Jakarta, Indonesia 11480
nina.lestari@binus.edu

ABSTRACT
The demand for optical fiber increases to meet the demands of Industry 4.0, companies that manufacture optical fiber must seize this moment to generate profitable business. However, let us not forget how important safety is to all employees working in the fiberglass industry, especially production employees who are directly involved in the fiberglass production process. This study focuses on Risk assessment for patch cords cables production using HIRADC method. The activities of Patch Cord Cable production are divided into 6 steps are striping, curing, trimming, crimping, inspection, packing. Risk assessment in the patch cord production process activities to the packing process by conducting a HIRADC Analysis from determining hazards, potential incidents, to risk ratings. The results of this study obtained additional control for recommended to eliminate the potential for work accidents in the activity Striping, Curing Trimming, Crimping, and Inspection to increase productivity production Cable Fiber Optic (item product: Patch Cord) in PT. JK aligns with SDG 9 that industrialization development can be achieved by improving manufacturing productivity by reducing or eliminating the possibility of occupational accidents.

Keywords: Optical fiber, Risk Assessment, HIRADC, SDG

INTRODUCTION
A. Background
Industrial Era 4.0 has arrived in Indonesia. This new round combines physical, digital, and biological aspects, including the use of artificial intelligence, robotics, and machine learning capabilities. Digitization means anything that was previously analog or has traditionally been technologically restructured to become digital. The definition of digital technology includes the use of large amounts of data (big data), data storage techniques in the cloud (cloud computing), and internet connectivity (internet of things) (Miller, n.d.).

Fiber optic cables are tools that can help support Industry 4.0 challenges. The need for an optimal infrastructure network to support data centers is a cornerstone of Industry 4.0. Fiber optic products enable various sectors in the industry 4.0 era to get the right infrastructure support to drive business growth and avoid downtime.

The demand for optical fiber increases to meet the demands of Industry 4.0, companies that manufacture optical fiber must seize this moment to generate profitable business. However, let us not forget how important safety is to all employees working in the fiberglass industry, especially production employees who are directly involved in the fiberglass production process.

B. Fiber Optic
Fiber optic cable is a medium for propagating light. Fiber optic cable harnesses consist of one to several hundred fiber optic strands depending on the type used/selected. Light as an information carrier is reflected within the optical fiber without leaving the path/optical fiber. Light only emerges from the ends of...
optical fibers or from cracks in optical fibers (Miller, n.d.).

Figure 1. Structure Fiber Optic

The main parts include the following:

1. **Core**
 - This core is the part that transmits light made of glass or plastic. If the larger the core, the lighter can be transmitted into the fiber.

2. **Cladding**
 - Another part of fiber optic is Cladding. This part is in the outer optics surrounding the Core and will later reflect light waves back to the Core.

3. **Coating**
 - This part consists of several layers of plastic that are used to maintain fiber strength, absorb shock, and provide additional protection to the fiber. Where this buffer layer consists of 250 microns to 900 microns whose function is to protect the fiber from the risk of damage and moisture.

4. **Outer Jacket**
 - The outer jacket is the part that serves as a protector. Namely protecting about hundreds to thousands of optical fibers arranged in a fiber optic cable.

 Although small fiberglass contains glass material, you still need to be careful of fiberglass fragments. Fiber optic cables travel through the blood to the heart and are therefore dangerous if they enter the body. It is dangerous if a small, smooth, sharp object pierces the heart. Therefore, the manufacturing process of fiber optic cables must consider possible accidents so that they can be managed.

 Fiber Optic Tools (Tool Kit) and the functions, there are various kinds of fiber optic tools that have their respective functions. Here are some of those tools.

 a. **Fusion Splicer**
 - This tool is used to connect optical fiber and a tool used to connect fiber optic cores. Where the fiber in question is made of glass and applies electrical power which is converted into a laser-shaped light media. It is known that this Fusion Splicer has a high enough accuracy to produce perfect splicing.

 b. **Stripper**
 - Fiber optics requires a tool called Stripper which is useful as a tool for cutting and peeling skin and also meat from cables.

 c. **Cleaver**
 - This tool called Cleaver has a function to cut cores. Where when found on the skin of the optical cable you have peeled. To cut it, then you need to use this Cleaver. That way, the glass fiber can be cut neatly.

 d. **Optical Fiber Identifier**
 - For this one tool has a function to be able to find out the direction of the signal with directions and the amount of power that has been passed.

C. **Industry Fiber Optics**

PT. JK is a company that manufactures optical fiber cables in Indonesia. Fiber optics are transmission lines made of very thin glass fibers, smaller than a human hair, that can transmit light from one place to another. Fiber optic cables are also made of pure glass and are long, thin, and have a very small diameter (microns). Known for its high-quality products in the market, the company also has expertise in manufacturing different types of optical cables. The production process begins with receiving raw materials from suppliers and then delivering them to the warehouse. After the raw materials pass the test in the quality inspection area, they proceed to the production area. On the production floor, the process of combining multiple materials to form the final product is
followed by a series of tests to check the quality of the product.

D. Delimitation of the Problem

This research focuses on the manufacturing process of patch cords, which are fiber optic cables made of glass fiber material. A plug is attached to the end of this cable. This cable is commonly used by data center service providers in Indonesia to connect equipment to telecommunications connections. The advantage of this product is that it can transmit electrical wiring from patch cables quickly, stably, and safely. The size of the cable is thinner than the shield. However, it is possible to send optical signals from one location to another. Generally, patch cords are used for various needs. One of them is the backbone of communication networks. You can connect not only networks of buildings and branches, but also between islands. Patch cables are extremely useful for transmitting millions of pieces of data from building to building, office to office, city to city, and island to island.

![Figure 2. Patch Cord](image)

These cables are so-called patch cord cables, which allow you to connect your desktop or a laptop to another device. You can also use patch cords cables to connect servers to structured cable systems or switch ports. Patch cords cable speeds are close to Cat5e, Cat6, and solid UTP in the fiber category. Patch cords cables usually cost more than solid UTP cables or his Box cables.

Flow Process production Cable Fiber Optic (Patch Cord) as follow:

![Figure 3. Flow Process Production Patch Cord](image)

E. Sustainable Development Goals (SDGs)

The SDGs are a sustainable development program developed by the United Nations (UN) and agreed to by member countries in 2015. Its aim is to promote change based on human rights and equal social, economic, and environmental development. The SDGs have 17 goals and 169 targets to be achieved by 2030. In other words, SDGs are sustainable development challenges at the global level to realize a prosperous and peaceful society while protecting the earth. According to the National Development Planning Agency website, the SDGs are a global and national initiative to improve the well-being of societies. The SDGs have been adopted by all United Nations member states for the peace and prosperity of people and the planet.

![Figure 4. Sustainable Development Goals](image)

RESEARCH METHODE

This article is based on a data collection method that observes the production line activities of a patch cable manufacturing process. The process of research method analysis of fiberglass
occupational safety risks in production line (Fernando et al., n.d.; Haristama et al., 2023) is as follows:

![Figure 5. The Process of Research Method](image)

RESULTS AND ANALYSIS
A. HIRADC
The activities of Patch Cord Cable production are divided into 6 steps are striping, curing, trimming, crimping, inspection, packing. Risk assessment in the patch cord production process activities to the packing process by conducting a HIRADC Analysis from determining hazards, potential incidents, to risk ratings (Nurraudah et al., 2023; Soesilo, n.d.). Where the overall result can be seen as follows.

Table 1. HIRADC Analysis for Patch Cord Production

B. Sustainable Development Goals (SDGs)
In line with Indonesia's 2030 SDGs roadmap, this article aligns with SDG 9 that industrialization development can be achieved by improving manufacturing productivity by reducing or eliminating the possibility of occupational accidents. This study focuses to risk assessment to prevent or even eliminate the occurrence of industrial accidents and improve productivity, thereby indirectly supporting Indonesia's SDGs activities.

CONCLUSION
The results of this study obtained additional control for recommended to eliminate the potential for work accidents in the activity Striping, Curing Trimming, Crimping, and Inspection to increase productivity production Cable Fiber Optic (Patch Cord) in PT. JK aligns with SDG 9 that industrialization development can be achieved by improving manufacturing productivity by reducing or eliminating the possibility of occupational accidents (Putri et al., n.d.; Rotinsulu et al., 2023), can be seen as follows.

Table 2. Item Control Recommended by HIRADC

REFERENCES

Miller, C. M. (n.d.). A Fiber-Optic-Cable Connector.

OHSAS Hazard Control Hierarchy 18001:2007
