Application Of Piezoelectric Energy Harvesting At Airports: Energy Sources, Materials And Design
Abstract
Airports have many areas with intensive activities that can be potential sources for Piezoelectric Energy Harvesting because airports are places that produce much mechanical energy that has not been realized. This mechanical energy comes from various sources, such as passenger and visitor traffic, vehicle movement, elevator and conveyor use, and aircraft activity on runways and taxiways. The research methodology used is a Literature Review. This article reviews the factors that affect PEH, namely energy sources, materials, and design, and it is a literature study article related to smart airport technology. This article aims to establish hypotheses of influence between variables as a reference for further research. This literature review article will produce: 1) Energy source affects Piezoelectric Energy Harvesting; 2) Materials affect Piezoelectric Energy Harvesting; and 3) Design affects Piezoelectric Energy Harvesting. This research will produce a deeper understanding of the potential mechanical energy utilized at airports and how energy harvesting technology can be applied to optimize these mechanical energy sources. Hopefully, this article will provide an overview of designing Piezoelectric Energy Harvesting suitable for airports.
References
Altabey, W. A., & Kouritem, S. A. (2023). An Overview of the Topics of the Special Issue “The New Techniques for Piezoelectric Energy Harvesting: Design, Optimization, Applications, and Analysis.” Energies 2023, Vol. 16, Page 3357, 16(8), 3357. https://doi.org/10.3390/EN16083357
Ambrosio, R., Jimenez, A., Mireles, J., Moreno, M., Monfil, K., & Heredia, H. (2011). Study of Piezoelectric Energy Harvesting System Based on PZT. Integrated Ferroelectrics, 126(1), 77–86. https://doi.org/10.1080/10584587.2011.574989
Arimurti, Y., Radiyono, Y., & Surantoro, S. (2020). Studi Awal Implementasi Transduser Piezoelektrik sebagai Piranti Pemanen Energi pada Lantai. Jurnal Ilmu Fisika | Universitas Andalas, 12(2). https://doi.org/10.25077/jif.12.2.89-97.2020
Bairagi, S., Shahid-ul-Islam, Shahadat, M., Mulvihill, D. M., & Ali, W. (2023). Mechanical Energy Harvesting and Self-Powered Electronic Applications of Textile-Based Piezoelectric Nanogenerators: A Systematic Review. In Nano Energy (Vol. 111). https://doi.org/10.1016/j.nanoen.2023.108414
Cahyono, E. A., Sutomo, & Harsono, A. (2019). Literatur Review: Panduan Penulisan dan Penyusunan. Jurnal Keperawatan.
Covaci, C., & Gontean, A. (2020). Piezoelectric Energy Harvesting Solutions: A Review. In Sensors (Switzerland) (Vol. 20, Issue 12). https://doi.org/10.3390/s20123512
Diniardi, E., Syawaluddin, S., Ramadhan, A. I., Isnaini, W., Dermawan, E., & Almanda, D. (2017). Analisis Desain Pickup Piezoelektrik dari Model Hybrid Solar Cell-Piezoelectric untuk Daya Rendah. Jurnal Teknologi, 9(2). https://doi.org/10.24853/jurtek.9.2.83-88
Fabiani, D., Grolli, F., Selleri, G., Speranza, M., Brugo, T. M., Maccaferri, E., Cocchi, D., & Zucchelli, A. (2019). Nanofibrous Piezoelectric Structures for Composite Materials to be Used in Electrical and Electronic Components. Proceedings of the Nordic Insulation Symposium, 26. https://doi.org/10.5324/nordis.v0i26.3263
Febrawi, T., & Wonoyudo, B. D. (2013). Vibration Energy Harvesting pada Mesin Cuci dengan Mekanisme Piezoelectric. Jurnal Teknik Pomits, 2(1).
Habib, M., Lantgios, I., & Hornbostel, K. (2022). A Review of Ceramic, Polymer and Composite Piezoelectric Materials. In Journal of Physics D: Applied Physics (Vol. 55, Issue 42). https://doi.org/10.1088/1361-6463/ac8687
Indira, S. S., Vaithilingam, C. A., Oruganti, K. S. P., Mohd, F., & Rahman, S. (2019). Nanogenerators as a Sustainable Power Source: State of Art, Applications, and Challenges. Nanomaterials, 9(5). https://doi.org/10.3390/NANO9050773
Kang, M. G., Jung, W. S., Kang, C. Y., & Yoon, S. J. (2016). Recent Progress on PZT Based Piezoelectric Energy Harvesting Technologies. In Actuators (Vol. 5, Issue 1). https://doi.org/10.3390/act5010005
Kartiningrum, E. D. (2015). Panduan Penyusunan Studi Literatur. Lembaga Penelitian Dan Pengabdian Masyarakat Politeknik Kesehatan Majapahit, Mojokerto.
Kováciková, K., Novák, A., Kováciková, M., & Sedlácková, A. N. (2023). Comparison Of Selected Airports in Terms of Sustainability. Transportation Research Procedia, 75. https://doi.org/10.1016/j.trpro.2023.12.007
Lee, S., & Youn, B. D. (2011). A New Piezoelectric Energy Harvesting Design Concept: Multimodal Energy Harvesting Skin. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 58(3). https://doi.org/10.1109/TUFFC.2011.5733266
Liu, H., Zhong, J., Lee, C., Lee, S. W., & Lin, L. (2018). A Comprehensive Review on Piezoelectric Energy Harvesting Technology: Materials, Mechanisms, and Applications. In Applied Physics Reviews (Vol. 5, Issue 4). https://doi.org/10.1063/1.5074184
Mohammadpourfazeli, S., Arash, S., Ansari, A., Yang, S., Mallick, K., & Bagherzadeh, R. (2023). Future Prospects and Recent Developments of Polyvinylidene Fluoride (PVDF) Piezoelectric Polymer; Fabrication Methods, Structure, and Electro-Mechanical Properties. In RSC Advances (Vol. 13, Issue 1). https://doi.org/10.1039/d2ra06774a
Nechibvute, A., Chawanda, A., & Luhanga, P. (2012). Piezoelectric Energy Harvesting Devices: An Alternative Energy Source for Wireless Sensors. Smart Materials Research, 2012. https://doi.org/10.1155/2012/853481
Nuh, A. F., & Hendrowati, W. (2017). Studi Eksperimental Energi Listrik yang Dihasilkan oleh Mekanisme Ocean Wave Energy Harvester Tipe Pelampung Bola dengan Metode Cantilever Piezoelectric. Jurnal Teknik ITS, 5(2). https://doi.org/10.12962/j23373539.v5i2.20433
Orrego, S., Shoele, K., Ruas, A., Doran, K., Caggiano, B., Mittal, R., & Kang, S. H. (2017). Harvesting Ambient Wind Energy With an Inverted Piezoelectric Flag. Applied Energy, 194. https://doi.org/10.1016/j.apenergy.2017.03.016
Pradeesh, E. L., Udhayakumar, S., Vasundhara, M. G., & Kalavathi, G. K. (2022). A Review on Piezoelectric Energy Harvesting. In Microsystem Technologies (Vol. 28, Issue 8, pp. 1797–1830). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s00542-022-05334-4
Safaei, M., Sodano, H. A., & Anton, S. R. (2019). A Review of Energy Harvesting Using Piezoelectric Materials: State-of-the-Art a Decade Later (2008-2018). Smart Materials and Structures, 28(11). https://doi.org/10.1088/1361-665X/ab36e4
Sapkal, S., Kandasubramanian, B., & Panda, H. S. (2022). A Review of Piezoelectric Materials for Nanogenerator Applications. In Journal of Materials Science: Materials in Electronics (Vol. 33, Issue 36). https://doi.org/10.1007/s10854-022-09339-7
Sarker, M. R., Saad, M. H. M., Riaz, A., Hossain Lipu, M. S., Olazagoitia, J. L., & Arshad, H. (2022). A Bibliometric Analysis of Low-Cost Piezoelectric Micro-Energy Harvesting Systems from Ambient Energy Sources: Current Trends, Issues and Suggestions. In Micromachines (Vol. 13, Issue 6). https://doi.org/10.3390/mi13060975
Sekhar, M. C., Veena, E., Kumar, N. S., Naidu, K. C. B., Mallikarjuna, A., & Basha, D. B. (2023). A Review on Piezoelectric Materials and Their Applications. In Crystal Research and Technology (Vol. 58, Issue 2). https://doi.org/10.1002/crat.202200130
Selleri, G., Gino, M. E., Brugo, T. M., D’Anniballe, R., Tabucol, J., Focarete, M. L., Carloni, R., Fabiani, D., & Zucchelli, A. (2022). Self-Sensing Composite Material Based on Piezoelectric Nanofibers. Materials and Design, 219. https://doi.org/10.1016/j.matdes.2022.110787
Sezer, N., & Koç, M. (2021). A Comprehensive Review on the State-of-the-Art of Piezoelectric Energy Harvesting. In Nano Energy (Vol. 80). https://doi.org/10.1016/j.nanoen.2020.105567
Sharma, S., Kiran, R., Azad, P., & Vaish, R. (2022). A Review of Piezoelectric Energy Harvesting Tiles: Available Designs and Future Perspective. Energy Conversion and Management, 254, 115272. https://doi.org/10.1016/J.ENCONMAN.2022.115272
Shaukat, H., Ali, A., Bibi, S., Altabey, W. A., Noori, M., & Kouritem, S. A. (2023). A Review of the Recent Advances in Piezoelectric Materials, Energy Harvester Structures, and Their Applications in Analytical Chemistry. In Applied Sciences (Switzerland) (Vol. 13, Issue 3). https://doi.org/10.3390/app13031300
Sivasubramanian, R., Aravind Vaithilingam, C., Indira, S. S., Paiman, S., Misron, N., & Abubakar, S. (2021). A Review on Photovoltaic and Nanogenerator Hybrid System. In Materials Today Energy (Vol. 20). https://doi.org/10.1016/j.mtener.2021.100772
Tianchen, Y., Jian, Y., Ruigang, S., & Xiaowei, L. (2014). Vibration Energy Harvesting System for Railroad Safety Based on Running Vehicles. Smart Materials and Structures, 23(12). https://doi.org/10.1088/0964-1726/23/12/125046
Wu, N., Bao, B., & Wang, Q. (2021). Review on Engineering Structural Designs for Efficient Piezoelectric Energy Harvesting to Obtain High Power Output. In Engineering Structures (Vol. 235). https://doi.org/10.1016/j.engstruct.2021.112068
Wu, Y., Ma, Y., Zheng, H., & Ramakrishna, S. (2021). Piezoelectric Materials for Flexible and Wearable Electronics: A Review. In Materials and Design (Vol. 211). https://doi.org/10.1016/j.matdes.2021.110164
Yang, Z., Zhou, S., Zu, J., & Inman, D. (2018). High-Performance Piezoelectric Energy Harvesters and Their Applications. In Joule (Vol. 2, Issue 4). https://doi.org/10.1016/j.joule.2018.03.011
Yulia, E., Permana Putra, E., Ekawati, E., & Nugraha, N. (2016). Polisi Tidur Piezoelektrik Sebagai Pembangkit Listrik dengan Memanfaatkan Energi Mekanik Kendaraan Bermotor. Jurnal Otomasi Kontrol Dan Instrumentasi, 8(1). https://doi.org/10.5614/joki.2016.8.1.9
Zhao, J., & Wang, H. (2020). Mechanistic Modeling and Economic Analysis of Piezoelectric Energy Harvesting Potential in Airport Pavements. Transportation Research Record, 2674(11). https://doi.org/10.1177/0361198120942503.
Copyright (c) 2024 Direstu Amalia, Viktor Suryan, M. Indra Martadinata, Yeti Komalasari, Almuzani Almuzani, Muhammad Alamsyah, Nabila Hasna Arinda, Made Putra Darsana
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.