Deteksi Jenis Kelamin Berdasarkan Wajah Menggunakan Metode YOLOv8

  • Muhammad Adrezo Universitas Pembangunan Nasional "Veteran" Jakarta
  • Muhamad Erlan Ardiansyah Universitas Pembangunan Nasional “Veteran” Jakarta

Abstract

Deteksi objek merupakan salah satu penerapan dalam cabang computer vision yang mengalami banyak pengembangan. Penerapan deteksi objek telah banyak dilakukan, salah satunya adalah deteksi wajah dan pengenalan wajah. Wajah dapat berisi informasi karakteristik seseorang. Penelitian ini bertujuan untuk mendeteksi jenis kelamin berdasarkan citra wajah dengan metode YOLOv8. Dataset yang digunakan terdiri dari 94 data citra dimana dalam satu citra dapat mengandung lebih dari satu wajah sehingga terkumpul 119 data termasuk dalam kelas Pria, dan 127 data termasuk dalam kelas Wanita. Hasil performa model yaitu, nilai precision sebesar 0.85 dan recall sebesar 0.86. Serta nilai mAP50 sebesar 0.89 dan nilai mAP50-95 sebesar 0.68. Hasil penelitian berdasarkan performa menunjukkan bahwa model yang dibuat mampu mendeteksi dan membedakan jenis kelamin dengan cukup baik.

Kata Kunci: Deteksi Objek, Computer Vision, Deteksi Jenis Kelamin, YOLO

References

Adhayanti, N., Nugroho, F., & Susiloatmadja, R. (2023). Sistem Pendeteksi Wajah Bermasker Secara Real Time Menggunakan Metode CNN. Jurnal Ilmiah Teknik, 2, 29–34. https://doi.org/10.56127/juit.v2i1.475
Akil, I. (2023). Face Detection Pada Gambar Dengan Menggunakan OpenCV Haar Cascade. INTI Nusa Mandiri, 17(2). https://doi.org/10.33480/inti.v17i2.4000
Amjoud, A. B., & Amrouch, M. (2023). Object Detection Using Deep Learning, CNNs and Vision Transformers: A Review. IEEE Access, 11, 35479–35516. https://doi.org/10.1109/ACCESS.2023.3266093
Arora, M., Naithani, S., & Shaju Areeckal, A. (2022). A web-based application for face detection in real-time images and videos. Journal of Physics: Conference Series, 2161(1), 012071. https://doi.org/10.1088/1742-6596/2161/1/012071
Arshad, U., & Reza, A. (2021). Object Detection in Last Decade - A Survey. Scientific Journal of Informatics, 8(1), 60–70. https://doi.org/10.15294/sji.v8i1.28956
Desiani, A., Adrezo, M., Marselina, N. C., Arhami, M., Salsabila, A., & Al-Filambany, M. G. (2022). A Combination of Image Enhancement and U-Net Architecture for Segmentation in Identifying Brain Tumors on CT-SCAN Images. 2022 International Conference on Informatics, Multimedia, Cyber and Information System (ICIMCIS), 423–428. https://doi.org/10.1109/ICIMCIS56303.2022.10017519
Diego-Mas, J. A., Fuentes-Hurtado, F., Naranjo, V., & Alcañiz, M. (2020). The Influence of Each Facial Feature on How We Perceive and Interpret Human Faces. I-Perception, 11(5). https://doi.org/10.1177/2041669520961123
HumanSignal. (2022). LabelImg. Git code. Https://Github.Com/HumanSignal/LabelImg .
Jamtsho, Y., Riyamongkol, P., & Waranusast, R. (2021). Real-time license plate detection for non-helmeted motorcyclist using YOLO. ICT Express, 7(1), 104–109. https://doi.org/https://doi.org/10.1016/j.icte.2020.07.008
Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A Review of Yolo Algorithm Developments. Procedia Computer Science, 199, 1066–1073. https://doi.org/https://doi.org/10.1016/j.procs.2022.01.135
Rahman Hassan, K., & Hadi Ali, I. (2020). Age and Gender Classification using Multiple Convolutional Neural Network. IOP Conference Series: Materials Science and Engineering, 928(3), 032039. https://doi.org/10.1088/1757-899X/928/3/032039
Srivastava, S., Divekar, A. V., Anilkumar, C., Naik, I., Kulkarni, V., & Pattabiraman, V. (2021). Comparative analysis of deep learning image detection algorithms. Journal of Big Data, 8(1), 66. https://doi.org/10.1186/s40537-021-00434-w
Sukmandhani, A. A., & Sutedja, I. (2019). Face Recognition Method for Online Exams. 2019 International Conference on Information Management and Technology (ICIMTech), 1, 175–179. https://doi.org/10.1109/ICIMTech.2019.8843831
Sultana, F., Sufian, A., & Dutta, P. (2019). A Review of Object Detection Models based on Convolutional Neural Network. Intelligent computing: image processing-based applications, 1-16. https://doi.org/10.1007/978-981-15-4288-6_1
Szeliski, R. (2022). Computer Vision. Springer International Publishing. https://doi.org/10.1007/978-3-030-34372-9
Uba, N. K. (2019). Land Use and Land Cover Classification Using Deep Learning Techniques. Arizona State University
Wang, G., Chen, Y., An, P., Hong, H., Hu, J., & Huang, T. (2023). UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios. Sensors, 23(16), 7190. https://doi.org/10.3390/s23167190
Published
2024-10-06
Abstract viewed = 4 times
PDF downloaded = 2 times