DESIGNING A DATA WAREHOUSE TO OPTIMIZE THE HOTEL BOOKING MONITORING DASHBOARD
DOI:
https://doi.org/10.31539/rr4rhx45Abstract
In the rapidly growing tourism industry, efficient data management is crucial for strategic decision-making. This study focuses on the design and implementation of a data warehouse to optimize the monitoring dashboard for hotel bookings on an application X, an online hotel booking platform, a product of PT. XYZ. Along with the increase in volume and complexity of booking transaction data, there is an urgent need for an efficient data management system that can provide insights quickly and accurately. To address this, the study uses Kimball's Nine-Step Methodology and implements a star schema, which simplifies complex data relationships and improves query performance. The ETL (Extract, Transform, Load) process is applied to ensure accurate extraction, transformation, and loading of data from operational systems into the data warehouse, thereby guaranteeing consistency and accuracy for analysis. Tools such as SQL Server Management Studio 2022, Visual Studio 2019, and SQL programming were used to develop the data warehouse and the star schema. The results of the study show that the star schema, with a central fact table and surrounding dimension tables, effectively optimizes data processing and query speed. The system is scalable, allowing for future expansion without significant changes, and provides a robust platform for business intelligence. Recommendations include developing dimension analysis, optimizing the ETL process, and integrating predictive analytics to enhance decision-making. Overall, this study provides a structured data warehouse design that significantly improves PT. XYZ's ability to process, analyze, and visualize hotel booking data for strategic decision-making.
Keywords: Data Warehouse, Extract Transform Load (ETL), Dashboard, Nine-Step Kimball, SQL.
References
Adamson, C. (2010). The complete reference: Star schema [E-book]. Star Schema Central. Available from http://www.starschemacentral.com
Anshari, S. F., & Retno, S. (2023). Penerapan Metode Nine-Step Kimball Dalam Pengolahan Data History Menggunakan Data Warehouse dan Business Intelligence. Jurnal Ilmu Komputer, 16(1), 69.
Beng, J. T., Amanto, A. F., Aurelia, A., Chandra, D., Mandey, K. Y. D., Ramadhani, L. A., & Tiatri, S. (2023, December). Designing mathematics, science, and reading competency dashboard using business intelligence algorithm. In AIP Conference Proceedings (Vol. 2680, No. 1, p. 020179). AIP Publishing LLC.
Cobanoglu, C., Dogan, S., Berezina, K., Collins, G., Nanu, L., Shahtakhtinskaya, K., & Parvez, O. (2021). Hospitality and tourism information technology. University of South Florida M3 Center Publishing, 17(9781732127593), 2.
Completo, J., Cruz, R. S., Coheur, L., & Delgado, M. (2012). Design and implementation of a data warehouse for benchmarking in clinical rehabilitation. Procedia Technology, 5, 885-894.
Fana, W. S., Permana, R., & Islam, M. A. (2021). Data Warehouse Design With ETL Method (Extract, Transform, And Load) for Company Information Centre. International Journal of Artificial Intelligence Research, 5(2), 132-137.
Girsang, A. S., Satya, D., Isa, S. M., Al Fariz, S., Susilo, B., Ramdani, D., & Lian, M. (2017, November). Decision support system using data warehouse for hotel reservation system. In 2017 International Conference on Sustainable Information Engineering and Technology (SIET) (pp. 369-373). IEEE.
Hjelle, S., Mikalef, P., Altwaijry, N., & Parida, V. (2024). Organizational decision making and analytics: An experimental study on dashboard visualizations. Information & Management, 61(6), 104011.
Irvan, O., Beng, J. T., & Trisnawarman, D. (2020). Dashboard pengukuran kinerja program studi perguruan tinggi. Jurnal Ilmu Komputer dan Sistem Informasi, 8(1), 126-132.
Kimball, R., & Caserta, J. (2004). The data warehouse ETL toolkit. John Wiley & Sons.
Kimball, R., & Ross, M. (2002). The data warehouse toolkit: The complete guide to dimensional modeling (2nd ed.). Wiley.
Kusnardi, H., Beng, J. T., & Sutrisno, T. (2023, December). Dashboard design for predicting the investment value of houses at region Y using database analysis through the DES method. In AIP Conference Proceedings (Vol. 2680, No. 1, p. 020141). AIP Publishing LLC.
Lunzaga, E. D., Padoginog, R. G., Razalo, L. M., & Borja, W. (2024). Research and education sustainability: Unlocking opportunities in shaping today’s generation decision making and building connections.
Mariani, M., & Baggio, R. (2022). Big data and analytics in hospitality and tourism: a systematic literature review. International Journal of Contemporary Hospitality Management, 34(1), 231-278.
Putri, T. A., Salsabila, T. M., Angela, O., Trisnawarman, D., & Beng, J. T. (2024). Data warehouse design for internal accreditation data management in a private university.
Samantha, V., Putri, T. A., Salsabila, T. M., Trisnawarman, D., & Beng, J. T. (2024). Perancangan data mart untuk optimalisasi analisis penjualan produk di PT. X.
Suta, I. B. L. M., Mahendra, I. G. N. A. S., & Sudarmojo, Y. P. (2019). Design General Hospital Data Warehouse Base on Nine Step Methodology. IJEET (International J. Eng. Emerg. Technol, 4(1), 15-19.
Syaputra, M. D., Nazir, A., Gusti, S. K., Sanjaya, S., & Syafria, F. (2022). Data warehouse design for sales transactions on CV. Sumber Tirta Anugerah. Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi, 8(2), 88.
Tan, D., & Wiratama, J. (2024). Sales Analysis on Garment Industry with Datawarehouse and ETL Implementation on Star Schema. The Indonesian Journal of Computer Science, 13(1).
Vercellis, C. (2011). Business intelligence: data mining and optimization for decision making. John Wiley & Sons.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Alice Shizuka Hutagaol, Jap Tji Beng, Wasino Wasino, Sri Tiatri, Ele Lunzaga, Tasya Mulia Salsabila, Rahmiyana Nurkholiza

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.