PERBANDINGAN SUPPORT VECTOR MACHINE DAN CONVOLUTIONAL NEURAL NETWORK UNTUK KLASIFIKASI PENYAKIT DAUN SINGKONG
DOI:
https://doi.org/10.31539/v7atvm18Abstract
Tanaman singkong merupakan salah satu komoditas pertanian penting di Indonesia, namun produksinya sering menurun akibat serangan penyakit seperti CBB, CBSD, CGM, dan CMD. Penelitian ini bertujuan untuk membandingkan dua metode, yaitu Support Vector Machine (SVM) dan Convolutional Neural Network (CNN), dalam klasifikasi penyakit daun singkong berbasis citra digital. Citra daun diubah menjadi ukuran 128×128 piksel untuk menjaga keseimbangan antara detail visual dan efisiensi komputasi. SVM menggunakan ekstraksi fitur HOG, sedangkan CNN melakukan ekstraksi fitur secara otomatis melalui lapisan konvolusi. Hasil pengujian menunjukkan bahwa SVM memperoleh akurasi sebesar 88%, sedangkan CNN mencapai 84%. SVM menunjukkan kinerja yang lebih tinggi dan stabil pada seluruh metrik, sedangkan CNN mampu mempelajari pola visual secara otomatis meskipun hasilnya sedikit lebih rendah pada dataset ini. Dengan demikian, metode SVM dinilai lebih efektif untuk klasifikasi penyakit daun singkong.
Kata Kunci: Penyakit Daun Singkong, CNN, EfficientNet-B0, Klasifikasi Citra, SVM
References
Alonso Chavez, V., Milne, A. E., van den Bosch, F., Pita, J., & McQuaid, C. F. (2022). Modelling Cassava Production and Pest Management under Biotic and Abiotic Constraints. Plant Molecular Biology, 109(3), 325–349.
Bernard, D. T. A., Thierry, N., Jean-Pierre, L. T., Daniel, T., & Nagabhushan, P. (2024). Local Fourier Features for Handwriting Digit Images Classification. International Journal of Electrical and Computer Engineering, 14(3), 2592–2601.
Conciatori, M., Valletta, A., & Segalini, A. (2024). Improving the Quality Evaluation Process of Machine Learning Algorithms Applied to Landslide Time Series Analysis. Computers and Geosciences, 184.
FAO. (2022). FAO’s Plant Production and Protection Division. In FAO’s Plant Production and Protection Division. FAO. diakses pada 12 Februari 2025, pukul 16.30 dari https://openknowledge.fao.org/handle/20.500.14283/cc2447en
Food and Agriculture Organization of the United Nations. (2023). diakses pada 12 Februari 2025, pukul 20.00 dari https://www.fao.org/faostat/en/#data/QCL
Kandel, I., Castelli, M., & Popovič, A. (2020). Comparative Study of First Order Optimizers for Image Classification Using Convolutional Neural Networks on Histopathology Images. Journal of Imaging, 6(9).
Mwebaze, E., Gebru, T., Frome, A., Nsumba, S., & Tusubira, J. (2019). iCassava 2019 Fine-Grained Visual Categorization Challenge.
Ngesthi, S. O., & Wulandhari, L. A. (2024). Cassava Diseases Classification using EfficientNet Model with Imbalance Data Handling. JOIN (Jurnal Online Informatika), 9(27), 148–158.
Ntui, V. O., Tripathi, J. N., Kariuki, S. M., & Tripathi, L. (2024). Cassava Molecular Genetics and Genomics for Enhanced Resistance to Diseases and Pests. Molecular Plant Pathology, 25(1).
Pramudhita, D. A., Azzahra, F., Arfat, I. K., Magdalena, R., & Saidah, S. (2023). Strawberry Plant Diseases Classification Using CNN Based on MobileNetV3-Large and EfficientNet-B0 Architecture. Jurnal Ilmiah Teknik Elektro Komputer Dan Informatika, 9(3), 522–534.
Saradhi, T. V. (2025). A Study on Hyperparameter Tuning in Support Vector Machines and its Impact on Model Accuracy. Global Journal of Engineering Innovations & Interdisciplinary Research GJEIIR, 5(1), 11.
Shorten, C., & Khoshgoftaar, T. M. (2019). A Survey on Image Data Augmentation for Deep Learning. Journal of Big Data, 6(1).
Suhendra, R., Juliwardi, I., & Sanusi. (2022). Identifikasi dan Klasifikasi Penyakit Daun Jagung Menggunakan Support Vector Machine. Jurnal Teknologi Informasi, 1(1), 29–35.
Suyanto. (2022). Machine Learning Tingkat Dasar dan Lanjut (2nd ed.). Bandunga: Informatika Bandung.
Ullah Khan, W., Hamid, I., Nauman Khan, M., & Abdullah, E. (2023, May). Disease Classification of Tomato Plant Leaves Using Image Processing and Machine Learning Techniques. Proceedings of 1 St International Conference on Computing Technologies, Tools and Applications.
Yadav, J. S., Ogwok, E., Wagaba, H., Patil, B. L., Bagewadi, B., Alicai, T., Gaitan-Solis, E., Taylor, N. J., & Fauquet, C. M. (2011). RNAi-mediated Resistance to Cassava Brown Streak Uganda Virus in Transgenic Cassava. Molecular Plant Pathology, 12(7), 677–687.
Zhang, Z., Zou, C., Han, P., & Lu, X. (2020). A Runway Detection Method Based on Classification Using Optimized Polarimetric Features and HOG Features for PolSAR Images. IEEE Access, 8, 49160–49168.
Zulqarnain, M., Ghazali, R., Hassim, Y. M. M., & Rehan, M. (2020). Text Classification Based on Gated Recurrent unit Combines with Support Vector Machine. International Journal of Electrical and Computer Engineering, 10(4), 3734–3742.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Amelia Gusviani, Irma Handayani

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

