Komputasi Numerik Metode Iteratif Half-Sweep Preconditioned Gauss-Seidel Untuk Memecahkan Persamaan Resepan Pecahan Waktu

  • Andang Sunarto IAIN Bengkulu

Abstract

Dalam penelitian ini, peneliti berusaha memperoleh persamaan aproksimasi beda hingga dari diskritisasi persamaan resapan pecahan waktu linier satu dimensi dengan menggunakan turunan pecahan waktu Caputo. Suatu sistem persamaan linier akan dibuat dengan menggunakan persamaan aproksimasi beda hingga Caputo. Kemudian hasil dari system persamaan linier tersebut diselesaikan dengan menggunakan metode iterasif numerik Half-Sweep Preconditioned Gauss-Seidel (HSPGS) dimana efektivitasnya akan dibandingkan dengan metode Preconditioned Gauss-Seidel (PGS), (dikenal juga sebagai Full-Sweep Preconditioned Gauss- Seidel (FSPGS)) dan Gauss-Seidel (GS) sebagai metode kontrol. Contoh masalah juga disajikan untuk menguji efektivitas metode yang diusulkan. Temuan penelitian ini menunjukkan bahwa metode iteratif yang diusulkan yaitu HSPGS lebih unggul dibandingkan dengan metode FSPGS dan GS.

References

Abdullah, A. R. (1991). The four point Explicit Decoupled Group (EDG) method: A fast Poisson solver. International Journal of Computer Mathematics, 38(1-2), 61-70.
Agrawal, O. P. (2002). Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dynamics, 29(1), 145-155.
Chaves, A. S. (1998). A fractional diffusion equation to describe LĂ©vy flights. Physics Letters A, 239(1-2), 13-16.
Cheng, G. H., Huang, T. Z., & Cheng, X. Y. (2006). Preconditioned Gauss-Seidel type iterative method for solving linear systems. Applied Mathematics and Mechanics, 27(9), 1275-1279.
Diethelm, K., & Freed, A. D. (1999). On the solution of nonlinear fractional-order differential equations used in the modeling of viscoplasticity. In Scientific computing in chemical engineering II (pp. 217-224). Springer, Berlin, Heidelberg.
Evans, D. J. (1985). Group explicit iterative methods for solving large linear systems. International Journal of Computer Mathematics, 17(1), 81-108.
Evans, D. J., & Yousif, W. S. (1986). Explicit Group Iterative Methods for solving elliptic partial differential equations in 3-space dimensions. International journal of computer mathematics, 18(3-4), 323-340.
Gunawardena, A. D., Jain, S. K., & Snyder, L. (1991). Modified iterative methods for consistent linear systems. Linear Algebra and Its Applications, 154, 123-143.
Hackbusch, W. (1994). Iterative solution of large sparse systems of equations (Vol. 95, pp. xxii+-429). New York: Springer.
Hhonghao, H., Dongjin, Y., Yi, H., & Jinqiu, X. (2009, May). Preconditioned gauss-seidel iterative method for linear systems. In 2009 International Forum on Information Technology and Applications (Vol. 1, pp. 382-385). IEEE.
Kohno, T., Kotakemori, H., Niki, H., & Usui, M. (1997). Improving the modified Gauss-Seidel method for Z-matrices. Linear Algebra and its Applications, 267, 113-123.
Mainardi, F. (1997). Fractional calculus. In Fractals and fractional calculus in continuum mechanics (pp. 291-348). Springer, Vienna.
Meerschaert, M. M., & Tadjeran, C. (2004). Finite difference approximations for fractional advection–dispersion flow equations. Journal of computational and applied mathematics, 172(1), 65-77.
Othman, M. B., & Bin Abdullah, A. R. (1998). The Halfsweeps Multigrid method as a fast Multigrid Poisson solver. International journal of computer mathematics, 69(3-4), 319-329.
Saad, Y, (1996). Iterative method for sparse linear systems. Boston: International Thomas Publishing.
Young, D. M. (2014). Iterative solution of large linear systems. Elsevier.
Yuste, S. B., & Acedo, L. (2005). An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations. SIAM Journal on Numerical Analysis, 42(5), 1862-1874.
Yuste, S. B. (2006). Weighted average finite difference methods for fractional diffusion equations. Journal of Computational Physics, 216(1), 264-274.
Zhao, J., Zhang, G., Chang, Y., & Zhang, Y. (2000). A new preconditioned gauss-seidel method for linear systems, mathematics subject classification.
Zhang, Y. (2009). A finite difference method for fractional partial differential equation. Applied Mathematics and Computation, 215(2), 524-529.
Published
2021-11-15
How to Cite
Sunarto, A. (2021). Komputasi Numerik Metode Iteratif Half-Sweep Preconditioned Gauss-Seidel Untuk Memecahkan Persamaan Resepan Pecahan Waktu. INTECOMS: Journal of Information Technology and Computer Science, 4(2), 251 - 257. https://doi.org/https://doi.org/10.31539/intecoms.v4i2.3050
Abstract viewed = 0 times
PDF downloaded = 3 times