Klasifikasi Penyakit Tanaman Cabai Rawit Dilengkapi Dengan Segmentasi Citra Daun dan Buah Menggunakan Yolo v7

  • Masrur Anwar Institut Sains dan Teknologi Terpadu Surabaya
  • Yosi Kristian Institut Sains dan Teknologi Terpadu Surabaya
  • Endang Setyati Institut Sains dan Teknologi Terpadu Surabaya

Abstract

Diseases that attack chili plants can be diagnosed early by observing symptoms or changes that occur in the leaves and fruit of the chili plant. However, diseases or pests that attack chili plants within a single plant can vary. In this study, YOLO v7 was used to perform leaf and chili segmentation on images, and the segmented results were then classified for chili plant disease using Deep Convolutional Neural Network (DCNN) Transfer Learning with the Fine Tuning method. The test results of the constructed model showed that the Yolo v7 segmentation accuracy was 0.970 on mAP50 when performing chili plant leaf and fruit segmentation. For the DCNN model testing with transfer learning method using the EfficientNetV2M based model, an accuracy value of 0.912 was obtained for leaf disease classification and an accuracy of 0.889 was obtained for chili fruit classification.

Keyword: Chili Plant Diseases; Classification; Transfer Learning, Yolo v7 segmentation

References

Abas, S. M., Abdulazeez, A. M., & Zeebaree, D. Q. (2022). A YOLO and convolutional neural network for the detection and classification of leukocytes in leukemia. Indonesian Journal of Electrical Engineering and Computer Science, 25(1), 200. https://doi.org/10.11591/ijeecs.v25.i1.pp200-213
Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection (arXiv:2004.10934). arXiv. http://arxiv.org/abs/2004.10934
Erlina, T., & Fikri, M. (2023). A YOLO Algorithm-based Visitor Detection System for Small Retail Stores using Single Board Computer. Journal of Applied Engineering and Technological Science (JAETS), 4(2), 908–920. https://doi.org/10.37385/jaets.v4i2.1872
Farid, M., & Subekti, N. A. (2012). Tinjauan Terhadap Produksi, Konsumsi, Distribusi Dan Dinamika Harga Cabe Di Indonesia. Pusat Kebijakan Perdagangan Dalam Negeri, 24.
Hang, Zhang, Chen, Zhang, & Wang. (2019). Classification of Plant Leaf Diseases Based on Improved Convolutional Neural Network. Sensors, 19(19), 4161. https://doi.org/10.3390/s19194161
Meilin, A. (2014). Hama Dan Penyakit Pada Tanaman Cabai Serta Pengendaliannya. Balai Pengkajian Teknologi Pertanian Jambi, 26.
Nauly, D. (2020). Fluktuasi Dan Disparitas Harga Cabai Di Indonesia. Jurnal Agrosains dan Teknologi, 14.
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You Only Look Once: Unified, Real-Time Object Detection (arXiv:1506.02640). arXiv. http://arxiv.org/abs/1506.02640
Redmon, J., & Farhadi, A. (2016). YOLO9000: Better, Faster, Stronger (arXiv:1612.08242). arXiv. http://arxiv.org/abs/1612.08242
Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement (arXiv:1804.02767). arXiv. http://arxiv.org/abs/1804.02767
Tan, M., & Le, Q. V. (2021). EfficientNetV2: Smaller Models and Faster Training (arXiv:2104.00298). arXiv. http://arxiv.org/abs/2104.00298
Wang, C.-Y., Bochkovskiy, A., & Liao, H.-Y. M. (2022). YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors (arXiv:2207.02696). arXiv. http://arxiv.org/abs/2207.02696
Zikra, F., Usman, K., & Patmasari, R. (2021). Deteksi Penyakit Cabai Berdasarkan Citra Daun Menggunakan Metode Gray Level Co-Occurence Matrix Dan Support Vector Machine. 9.
Published
2023-06-27
Abstract viewed = 388 times
PDF downloaded = 540 times