Penelusuran Senyawa Inhibitor Alpha-Glukosidase Potensial untuk Diabetes Melitus Tipe 2 melalui Pendekatan In Silico dengan Evaluasi Profil Adme Via SwissADME.

Authors

  • Nurfadilah Akademi Farmasi Persada

DOI:

https://doi.org/10.31539/gw3g1x84

Abstract

The aim of this study was to demonstrate data retrieval from online databases to find compounds with relevant properties such as alpha-glucosidase inhibitors, which have the potential to be used in the treatment of Type 2 Diabetes Mellitus. The methods used included compound search, physicochemical property analysis, and drug-likeness prediction using Lipinski's Rule of Five as well as ADME profile evaluation using the SwissADME platform. Preliminary results showed that Miglitol and Quercetin have promising drug-likeness profiles, comply with Lipinski's Rule of Five, and exhibit good ADME characteristics. Although Acarbose, as an effective drug, does not meet all Lipinski criteria due to its specific mechanism of action. The conclusion of this study confirms the efficiency of the in-silico approach in the initial screening of drug candidates but requires further experimental validation to confirm its activity and safety.

Keywords: ADME, Alpha-Glucosidase Inhibitor, Drug-Likeness, In Silico, SwissADME, Type 2 Diabetes Mellitus.

References

Akmal, M., Patel, P., Wadhwa, R. (2024). Alpha Glucosidase Inhibitors. Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK557848/

Ancuceanu, R., Lascu, B. E., Drăgănescu, D., & Dinu, M. (2025). In Silico ADME Methods Used in the Evaluation of Natural Products. Pharmaceutics. 17(8). 1002. https://doi.org/10.3390/pharmaceutics17081002

Arief, I. (2022). Profil ADME dari Entitas Molekul Baru yang Disetujui oleh FDA Tahun 2021: Suatu Kajian in Silico. Jambura Journal of Chemistry. 4(2). 1-11. https://doi.org/10.34312/jambchem.v4i2.15257

Asnawi, A., Meldianisa, S., Aligita, W., Yuliantini, A., Febrina, E. (2024). Integrative Computational Approaches for Designing Novel Alpha-Glucosidase Inhibitors Based on Curculigoside a Derivatives: Virtual Screening, Molecular Docking, and Molecular Dynamics. JHP: Journal of Herbmed Pharmacology. 13(2). 308–323. https://doi.org/10.34172/jhp.2024.49407

Chong, K., & Chang, J. K., Chuang, L. M. (2023). Recent Advances in the Treatment of Type 2 Diabetes Mellitus Using New Drug Therapies. Kaohsiung Journal of MEdical Sciences. 40(3). 212–220. https://doi.org/10.1002/kjm2.12800

Hakiki, A., Andika, A., Rahmawati, R. (2024). Studi Molecular Docking dan Prediksi ADMET Senyawa Turunan Kurkumin sebagai Inhibitor Kasein Kinase 2-α. Lumbung Farmasi: Jurnal Ilmu Kefarmasian. 5(2). https://doi.org/10.31764/lf.v5i2.22563

Hanefeld, M. (1998). The role of acarbose in the treatment of non-insulin-dependent diabetes mellitus. Journal of diabetes and its complications. 12(4). 228–237. https://doi.org/10.1016/s1056-8727(97)00123-2

Kamble, A. N. S., Mitkar, A. A. (2023). Swiss ADME Predictions of Pharmacokinetics and Drug-Likeness Properties of Secondary Metabolites Present in Trigonella Foenum-Graecum. Journal Pharmacogn Phytochem. 12(5). 341-349. https://doi.org/10.22271/phyto.2023.v12.i5d.14745

Khan, H., Jan, F., Shakoor, A., Khan, A., Alasmari, A. F., Alasmari, F., Ullah, S., Harrasi, A. Al, Khan, M., & Ali, S. (2024). Design, Synthesis, Molecular Docking Study, and α-Glucosidase Inhibitory Evaluation of Novel Hydrazide–Hydrazone Derivatives of 3, 4-Dihydroxyphenylacetic Acid. Science Report. 14. 11410. https://doi.org/10.1038/s41598-024-62034-x

Khedraoui, M., Abchir, O., Nour, H., Yamari, I., Errougui, A., Samadi, A., & Chtita, S. (2024). An In Silico Study Based on QSAR and Molecular Docking and Molecular Dynamics Simulation for the Discovery of Novel Potent Inhibitor against AChE. Pharmaceuticals. 17(7). 830. https://doi.org/10.3390/ph17070830

Kothari, D. R., Godhaniya, M. D., & Kikani, K. M. (2025). In silico Evaluation of Plant-Derived Compounds as Potential α-Amylase Inhibitors for Treatment of Type 2 Diabetes. Bioscience Biotechnology Research Communications. 18(2). 111–119. http://dx.doi.org/10.21786/bbrc/18.2.8

Lam, T. P., Tran, N. N., Pham, L. D., Lai, N. V., Dang, B. N., Truong, N. N., Nguyen-Vo, S. K., Hoang, T. L., Mai, T. T., & Tran, T. D. (2024). Flavonoids as dual-target inhibitors against α-glucosidase and α-amylase: a systematic review of in vitro studies. Natural products and bioprospecting. 14(1). 4. https://doi.org/10.1007/s13659-023-00424-w

McIver, L. A., Preuss, C. V., Tripp, J. (2024). Acarbose. Treasure Island (FL): StatPearls Publishing. Available from: https://www.ncbi.nlm.nih.gov/books/NBK493214/

Pramudiyawati, A., Putri, D. E., Nurfadilah, N., Wilapangga, A. (2024). Skrining Studi in Silico Potensi Farmakokinetika dan Toksisitas Ekaliptus. Indonesian Journal of Pharmaceutical Education. 4(1). 39–46. https://doi.org/10.37311/ijpe.v4i1.24493

Putra, W. E., Sustiprijatno, Hidayatullah, A., Widiastuti, D., Heikal, M. F., & Salma, W. O. (2023). Virtual Screening of Natural Alpha-Glucosidase Inhibitor from Alpinia Galanga Bioactive Compounds as Anti-Diabetic Candidate: Anti-Diabetic Activity of Alpinia Galanga. Journal of Microbiology, Biotechnology and Food Sciences, 13(1). e4353. https://doi.org/10.55251/jmbfs.4353

Sabarathinam, S. (2024). Unraveling the therapeutic potential of quercetin and quercetin‑3‑O‑ glucuronide in Alzheimer’s disease through network pharmacology, molecular docking, and dynamic simulations. Scientific Reports. 1–14. https://doi.org/10.1038/s41598-024-61779-9

Sari, S. W., Wilapangga, A., Sari, A. N., & Astriani, S. (2023). Studi In Silico Potensi Farmakokinetik Dua Senyawa dari Tanaman Kenaf (Hibiscus Cannabinus L) untuk Prediksi Toksisitas. Jurnal Bina Cipta Husada: Jurnal Kesehatan Dan Science, 19(2). 70–79. Retrieved from https://www.jurnal.stikesbch.ac.id/index.php/jurnal/article/view/108

Singla, R., Kamboj, S., Chaudhary, J., & Singh, R. (2024). Pharmacological Research - Modern Chinese Medicine Mechanistic investigation of quercetin in the management of diabetic foot ulcer by network pharmacology and molecular docking. Pharmacological Research - Modern Chinese Medicine. 10(December 2023), 100373. https://doi.org/10.1016/j.prmcm.2024.100373

Sulastri, T., & Suwitono, M. R. (2024). In-Silico ADMETox Profiling of Quercetin Derivatives. 11th International Scholars Conference. 11(6). 1597-1609. https://doi.org/10.35974/isc.v11i6.3709

Tahiroğlu, V., Gören, K., Kotan, G., Yüksek, H. (2025). In Silico Drug Evaluation by Molecular Docking, ADME Studies and Synthesis, Characterization, Biological Activities, DFT, SAR Analysis of the Novel Mannich Bases. BMC Chemistry. 19(249). https://doi.org/10.1186/s13065-025-01615-x

Zhu, H., Zhong, X. (2022). Synthesis of Activity Evaluation of Flavonoid Derivatives as ɑ-Glucosidase Inhibitors. Frontiers in Chemistry. 10:1041328. https://doi.org/10.3389/fchem.2022.1041328

Downloads

Published

2025-12-12