HbA1C dan Profil Lipid sebagai Prediktor Komplikasi Penyakit Jantung pada Pasien Diabetes Mellitus
Abstract
This study aims to analyze the relationship between HbA1C and lipid profiles consisting of total cholesterol, triglycerides, HDL-C, and LDL-C as predictors of heart disease complications in patients with type 2 diabetes. The method used is observational analytic with a cross-sectional design. The results showed that the average HbA1c level was 9.01%; the average Lipid Profile levels were total cholesterol: 240.98 mg/dL, triglycerides: 170.08 mg/dL, HDL-C: 43.86 mg/dL and LDL-C: 161.56 mg/dL. The results of the Spearman correlation test showed a relationship between HbA1C and lipid profiles (total cholesterol, triglycerides, HDL, and LDL) in patients with type 2 diabetes at H. Abdul Manap Regional Hospital, Jambi City. The conclusion of the study is that type 2 DM patients have poor glycemic control (average HbA1C levels of 9.01%, with dyslipidemia (total cholesterol, triglycerides, and LDL-C increased and low HDL-C), a relationship was found between HbA1C and lipid profiles.
Keywords: Diabetes Mellitus, Hba1c, Lipid Profile, Heart Disease
References
Edlitz, Y., & Segal, E. (2022). Prediction of Type 2 Diabetes Mellitus Onset Using Logistic Regression-Based Scorecards. Elife, 11, e71862. https://doi.org/10.7554/eLife.71862
Handayani, M. D., Rayasari, F., Fauziah, M., Jumaiyah, W., & Asmara, A. (2023). Faktor Prediksi yang Berhubungan dengan Tingkat Kelelahan pada Pasien Diabetes Melitus Tipe 2. Journal of Telenursing (JOTING), 5(2), 2623-2631. https://doi.org/10.31539/joting.v5i2.7515
Hu, C., Zhang, J., Liu, J., Liu, Y., Gao, A., Zhu, Y., & Zhao, Y. (2020). Discordance between the Triglyceride Glucose Index and Fasting Plasma Glucose or Hba1c in Patients with Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention Predicts Cardiovascular Events: A Cohort Study from China. Cardiovascular Diabetology, 19(1), 116. https://doi.org/10.1186/s12933-020-01091-8
Islam, M. S., Qaraqe, M. K., Belhaouari, S., & Petrovski, G. (2021). Long Term HbA1c Prediction Using Multi-Stage CGM Data Analysis. IEEE Sensors Journal, 21(13), 15237-15247. https://ieeexplore.ieee.org/document/9406945/citations
Kemenkes. (2023). Laporan Riskesdas 2023. April 2024. https://www.badankebijakan.kemkes.go.id/laporan-hasil-survei/
Lee, K. S., Lee, Y., & Lee, S. (2024). Alanine to Glycine Ratio Is A Novel Predictive Biomarker For Type 2 Diabetes Mellitus. Diabetes, Obesity and Metabolism, 26(3), 980-988. https://doi.org/10.1111/dom.15395
Lee, S., Zhou, J., Wong, W. T., Liu, T., Wu, W. K. K., Wong, I. C. K., Zhang, Q., & Tse, G. (2021). Glycemic and lipid Variability for Predicting Complications and Mortality in Diabetes Mellitus Using Machine Learning. BMC Endocrine Disorders, 21(1), 94. https://doi.org/10.1186/s12902-021-00751-4
Lee, S., Zhou, J., Guo, C. L., Wong, W. T., Liu, T., Wong, I. C. K., Jeevaratnam, K., Zhang, Q., & Tse, G. (2021). Predictive Scores for Identifying Patients with Type 2 Diabetes Mellitus At Risk of Acute Myocardial Infarction and Sudden Cardiac Death. Endocrinology, Diabetes & Metabolism, 4(3), e00240. https://doi.org/10.1002/edm2.240
Li, G., Wei, T., Ni, W., Zhang, A., Zhang, J., Xing, Y., & Xing, Q. (2020). Incidence and Risk Factors of Gestational Diabetes Mellitus: A Prospective Cohort Study in Qingdao, China. Frontiers in Endocrinology, 11, 636. https://doi.org/10.3389/fendo.2020.00636
Lui, D. T. W., Lee, C. H., Chan, Y. H., Chow, W. S., Fong, C. H. Y., Siu, D. C. W., Tse, H. F., Woo, Y. C., & Lam, K. S. L. (2020). HbA1c Variability, in Addition to Mean HBA1C, Predicts Incident Hip Fractures in Chinese People with Type 2 Diabetes. Osteoporosis International : A Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 31(10), 1955–1964. https://doi.org/10.1007/s00198-020-05395-z
Nanayakkara, N., Curtis, A. J., Heritier, S., Gadowski, A. M., Pavkov, M. E., Kenealy, T., Owens, D. R., Thomas, R. L., Song, S., & Wong, J. (2021). Impact of Age At Type 2 Diabetes Mellitus Diagnosis On Mortality and Vascular Complications: Systematic Review and Meta-Analyses. Diabetologia, 64(2), 275-287. https://doi.org/10.1007/s00125-020-05319-w
Nurhayati, P., Irham, A. M., Pramana, I. D. B. K. W., & Harahap, H. S. (2022). HbA1c Sebagai Kandidat Biomarker untuk Prediksi Progesivitas Gangguan Kognitif Terkait Diabetes Melitus Tipe 2. Jurnal Kedokteran, 11(1), 732-738. https://doi.org/10.29303/jk.v11i1.4342
Park, J. M., Lee, H. S., Park, J. Y., Jung, D. H., & Lee, J. W. (2021). White Blood Cell Count As A Predictor Of Incident Type 2 Diabetes Mellitus Among Non-Obese Adults: A Longitudinal 10-Year Analysis Of The Korean Genome And Epidemiology Study. Journal of Inflammation Research, 1235-1242. https://doi.org/10.2147/jir.s300026
Putra, I. G. A. P., Budhitresna, A. A. G., & Astini, S. (2023). Hubungan Kadar Hb-A1c (Glikosilasi Hemoglobin) dengan Komplikasi Makrovaskular pada Penderita Diabetes Melitus Tipe 2 di RSUD Sanjiwani Gianyar. AMJ (Aesculapius Medical Journal), 3(1), 37-42. https://doi.org/10.22225/amj.3.1.2023.37%20
Rachman, S. K., Bhatara, T., & Hendryanny, E. (2021). Scoping Review: Hubungan Kontrol Glikemik (HbA1C), Durasi Penyakit, dan Profil Lipid pada Pasien Diabetes Melitus Tipe II dengan Kejadian Neuropati Diabetik. Jurnal Integrasi Kesehatan dan Sains, 3(2). https://doi.org/10.29313/jiks.v3i2.7340
Regmi, D., Al-Shamsi, S., Govender, R. D., & Al Kaabi, J. (2020). Incidence and Risk Factors Of Type 2 Diabetes Mellitus In An Overweight and Obese Population: A Long-Term Retrospective Cohort Study From A Gulf State. BMJ Open, 10(7), e035813. DOI: 10.1136/bmjopen-2019-035813
Sitasuwan, T., & Lertwattanarak, R. (2020). Prediction of Type 2 Diabetes Mellitus Using Fasting Plasma Glucose And Hba1c Levels Among Individuals With Impaired Fasting Plasma Glucose: A Cross-Sectional Study in Thailand. BMJ Open, 10(11), e041269. https://doi.org/10.1136/bmjopen-2020-041269
World Health Organization. (2024). Diabetes. 14 November 2024. https://www.who.int/health-topics/diabetes#tab=tab_1
Yan, Y., Kondo, N., Oniki, K., Watanabe, H., Imafuku, T., Sakamoto, Y., Shigaki, T., Maruyama, A., Nakazawa, H., & Kaneko, T. (2022). Predictive Ability of Visit‐To‐Visit Variability of Hba1c Measurements for The Development of Diabetic Kidney Disease: A Retrospective Longitudinal Observational Study. Journal of Diabetes Research, 2022(1), 6934188. https://doi.org/10.1155/2022/6934188
Yang, C. Y., Su, P. F., Hung, J. Y., Ou, H. T., & Kuo, S. (2020). Comparative Predictive Ability of Visit-to-Visit HbA1c Variability Measures for Microvascular Disease Risk in Type 2 Diabetes. Cardiovascular Diabetology, 19(1), 105. https://doi.org/10.1186/s12933-020-01082-9
Yang, J., & Jiang, S. (2022). Development and Validation of a Model That Predicts The Risk of Diabetic Nephropathy In Type 2 Diabetes Mellitus Patients: A Cross-Sectional Study. International Journal of General Medicine, 5089-5101. https://doi.org/10.2147/ijgm.s363474
Copyright (c) 2024 Sholeha Rezekiyah, Rd. Mustopa, Witi Karwiti, Ardiya Garini, Erwin Edyansyah
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.