HbA1C dan Profil Lipid sebagai Prediktor Komplikasi Penyakit Jantung pada Pasien Diabetes Mellitus

  • Sholeha Rezekiyah Politeknik Kesehatan Kementerian Kesehatan Jambi
  • Rd. Mustopa Politeknik Kesehatan Kementerian Kesehatan Jambi
  • Witi Karwiti Politeknik Kesehatan Kementerian Kesehatan Jambi
  • Ardiya Garini Politeknik Kesehatan Kementerian Kesehatan Palembang
  • Erwin Edyansyah Politeknik Kesehatan Kementerian Kesehatan Palembang

Abstract

This study aims to analyze the relationship between HbA1C and lipid profiles consisting of total cholesterol, triglycerides, HDL-C, and LDL-C as predictors of heart disease complications in patients with type 2 diabetes. The method used is observational analytic with a cross-sectional design. The results showed that the average HbA1c level was 9.01%; the average Lipid Profile levels were total cholesterol: 240.98 mg/dL, triglycerides: 170.08 mg/dL, HDL-C: 43.86 mg/dL and LDL-C: 161.56 mg/dL. The results of the Spearman correlation test showed a relationship between HbA1C and lipid profiles (total cholesterol, triglycerides, HDL, and LDL) in patients with type 2 diabetes at H. Abdul Manap Regional Hospital, Jambi City. The conclusion of the study is that type 2 DM patients have poor glycemic control (average HbA1C levels of 9.01%, with dyslipidemia (total cholesterol, triglycerides, and LDL-C increased and low HDL-C), a relationship was found between HbA1C and lipid profiles.

 

Keywords: Diabetes Mellitus, Hba1c, Lipid Profile, Heart Disease

References

Ayman, K. M. H., Mahmoud, A. A., Eman, A. A., Marwa, S., Mona, M. S., & Yehia, T. K. (2021). Correlation between Left Ventricular Diastolic Dysfunction and Dyslipidaemia In Asymptomatic Patients With New-Onset Type 2 Diabetes Mellitus. The Egyptian Journal of Internal Medicine, 33, 1-11. https://doi.org/10.1186/s43162-021-00037–0

Edlitz, Y., & Segal, E. (2022). Prediction of Type 2 Diabetes Mellitus Onset Using Logistic Regression-Based Scorecards. Elife, 11, e71862. https://doi.org/10.7554/eLife.71862

Handayani, M. D., Rayasari, F., Fauziah, M., Jumaiyah, W., & Asmara, A. (2023). Faktor Prediksi yang Berhubungan dengan Tingkat Kelelahan pada Pasien Diabetes Melitus Tipe 2. Journal of Telenursing (JOTING), 5(2), 2623-2631. https://doi.org/10.31539/joting.v5i2.7515

Hu, C., Zhang, J., Liu, J., Liu, Y., Gao, A., Zhu, Y., & Zhao, Y. (2020). Discordance between the Triglyceride Glucose Index and Fasting Plasma Glucose or Hba1c in Patients with Acute Coronary Syndrome Undergoing Percutaneous Coronary Intervention Predicts Cardiovascular Events: A Cohort Study from China. Cardiovascular Diabetology, 19(1), 116. https://doi.org/10.1186/s12933-020-01091-8

Islam, M. S., Qaraqe, M. K., Belhaouari, S., & Petrovski, G. (2021). Long Term HbA1c Prediction Using Multi-Stage CGM Data Analysis. IEEE Sensors Journal, 21(13), 15237-15247. https://ieeexplore.ieee.org/document/9406945/citations

Kemenkes. (2023). Laporan Riskesdas 2023. April 2024. https://www.badankebijakan.kemkes.go.id/laporan-hasil-survei/

Lee, K. S., Lee, Y., & Lee, S. (2024). Alanine to Glycine Ratio Is A Novel Predictive Biomarker For Type 2 Diabetes Mellitus. Diabetes, Obesity and Metabolism, 26(3), 980-988. https://doi.org/10.1111/dom.15395

Lee, S., Zhou, J., Wong, W. T., Liu, T., Wu, W. K. K., Wong, I. C. K., Zhang, Q., & Tse, G. (2021). Glycemic and lipid Variability for Predicting Complications and Mortality in Diabetes Mellitus Using Machine Learning. BMC Endocrine Disorders, 21(1), 94. https://doi.org/10.1186/s12902-021-00751-4

Lee, S., Zhou, J., Guo, C. L., Wong, W. T., Liu, T., Wong, I. C. K., Jeevaratnam, K., Zhang, Q., & Tse, G. (2021). Predictive Scores for Identifying Patients with Type 2 Diabetes Mellitus At Risk of Acute Myocardial Infarction and Sudden Cardiac Death. Endocrinology, Diabetes & Metabolism, 4(3), e00240. https://doi.org/10.1002/edm2.240

Li, G., Wei, T., Ni, W., Zhang, A., Zhang, J., Xing, Y., & Xing, Q. (2020). Incidence and Risk Factors of Gestational Diabetes Mellitus: A Prospective Cohort Study in Qingdao, China. Frontiers in Endocrinology, 11, 636. https://doi.org/10.3389/fendo.2020.00636

Lui, D. T. W., Lee, C. H., Chan, Y. H., Chow, W. S., Fong, C. H. Y., Siu, D. C. W., Tse, H. F., Woo, Y. C., & Lam, K. S. L. (2020). HbA1c Variability, in Addition to Mean HBA1C, Predicts Incident Hip Fractures in Chinese People with Type 2 Diabetes. Osteoporosis International : A Journal Established as Result of Cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA, 31(10), 1955–1964. https://doi.org/10.1007/s00198-020-05395-z

Nanayakkara, N., Curtis, A. J., Heritier, S., Gadowski, A. M., Pavkov, M. E., Kenealy, T., Owens, D. R., Thomas, R. L., Song, S., & Wong, J. (2021). Impact of Age At Type 2 Diabetes Mellitus Diagnosis On Mortality and Vascular Complications: Systematic Review and Meta-Analyses. Diabetologia, 64(2), 275-287. https://doi.org/10.1007/s00125-020-05319-w

Nurhayati, P., Irham, A. M., Pramana, I. D. B. K. W., & Harahap, H. S. (2022). HbA1c Sebagai Kandidat Biomarker untuk Prediksi Progesivitas Gangguan Kognitif Terkait Diabetes Melitus Tipe 2. Jurnal Kedokteran, 11(1), 732-738. https://doi.org/10.29303/jk.v11i1.4342

Park, J. M., Lee, H. S., Park, J. Y., Jung, D. H., & Lee, J. W. (2021). White Blood Cell Count As A Predictor Of Incident Type 2 Diabetes Mellitus Among Non-Obese Adults: A Longitudinal 10-Year Analysis Of The Korean Genome And Epidemiology Study. Journal of Inflammation Research, 1235-1242. https://doi.org/10.2147/jir.s300026

Putra, I. G. A. P., Budhitresna, A. A. G., & Astini, S. (2023). Hubungan Kadar Hb-A1c (Glikosilasi Hemoglobin) dengan Komplikasi Makrovaskular pada Penderita Diabetes Melitus Tipe 2 di RSUD Sanjiwani Gianyar. AMJ (Aesculapius Medical Journal), 3(1), 37-42. https://doi.org/10.22225/amj.3.1.2023.37%20

Rachman, S. K., Bhatara, T., & Hendryanny, E. (2021). Scoping Review: Hubungan Kontrol Glikemik (HbA1C), Durasi Penyakit, dan Profil Lipid pada Pasien Diabetes Melitus Tipe II dengan Kejadian Neuropati Diabetik. Jurnal Integrasi Kesehatan dan Sains, 3(2). https://doi.org/10.29313/jiks.v3i2.7340

Regmi, D., Al-Shamsi, S., Govender, R. D., & Al Kaabi, J. (2020). Incidence and Risk Factors Of Type 2 Diabetes Mellitus In An Overweight and Obese Population: A Long-Term Retrospective Cohort Study From A Gulf State. BMJ Open, 10(7), e035813. DOI: 10.1136/bmjopen-2019-035813

Sitasuwan, T., & Lertwattanarak, R. (2020). Prediction of Type 2 Diabetes Mellitus Using Fasting Plasma Glucose And Hba1c Levels Among Individuals With Impaired Fasting Plasma Glucose: A Cross-Sectional Study in Thailand. BMJ Open, 10(11), e041269. https://doi.org/10.1136/bmjopen-2020-041269

World Health Organization. (2024). Diabetes. 14 November 2024. https://www.who.int/health-topics/diabetes#tab=tab_1

Yan, Y., Kondo, N., Oniki, K., Watanabe, H., Imafuku, T., Sakamoto, Y., Shigaki, T., Maruyama, A., Nakazawa, H., & Kaneko, T. (2022). Predictive Ability of Visit‐To‐Visit Variability of Hba1c Measurements for The Development of Diabetic Kidney Disease: A Retrospective Longitudinal Observational Study. Journal of Diabetes Research, 2022(1), 6934188. https://doi.org/10.1155/2022/6934188

Yang, C. Y., Su, P. F., Hung, J. Y., Ou, H. T., & Kuo, S. (2020). Comparative Predictive Ability of Visit-to-Visit HbA1c Variability Measures for Microvascular Disease Risk in Type 2 Diabetes. Cardiovascular Diabetology, 19(1), 105. https://doi.org/10.1186/s12933-020-01082-9

Yang, J., & Jiang, S. (2022). Development and Validation of a Model That Predicts The Risk of Diabetic Nephropathy In Type 2 Diabetes Mellitus Patients: A Cross-Sectional Study. International Journal of General Medicine, 5089-5101. https://doi.org/10.2147/ijgm.s363474
Published
2024-11-25
Abstract viewed = 0 times
PDF downloaded = 0 times