Penggunaan Stetoskop Elektronik pada Kelainan Katup Jantung
Abstract
This study aims to see the effectiveness of using an electronic stethoscope compared to a conventional one in patients with heart valve disorders. The method used in this writing is a systematic review through several databases, namely Pubmed, ClinicalKey, Proquest, Science Direct, and Scopus. The article analysis process uses the PRISMA method. The research results show that electronic stethoscopes are more expensive because many parts and applications/software are added. Still, they are very efficient in accurately diagnosing specific heart sound abnormalities and have more advantages than conventional stethoscopes. In conclusion, electronic stethoscopes are very effective and efficient in increasing the speed and accuracy of diagnosing specific heart sound abnormalities, so they have more benefits.
Keywords: Heart Valves, Electronic Stethoscope
References
Alanazi, A., Atcherson, S., Franklin, C., & Bryan, M. (2020). Frequency Responses of Conventional and Amplified Stethoscopes For Measuring Heart Sounds. Saudi Journal of Medicine and Medical Sciences, 8(2), 112-117. https://doi.org/10.4103/sjmms.sjmms_118_19
Barua, P. D., Karasu, M., Kobat, M. A., Balık, Y., Kivrak, T., Baygin, M., Dogan, S., Demir, F. B., Tuncer, T., Tan, R. S., & Acharya, U. R. (2022). An Accurate Valvular Heart Disorders Detection Model Based On A New Dual Symmetric Tree Pattern Using Stethoscope Sounds. Computers in Biology and Medicine, 146. https://doi.org/10.1016/j.compbiomed.2022.105599
Chorba, J. S., Shapiro, A. M., Le, L., Maidens, J., Prince, J., Pham, S., Kanzawa, M. M., Barbosa, D. N., Currie, C., Brooks, C., White, B. E., Huskin, A., Paek, J., Geocaris, J., Elnathan, D., Ronquillo, R., Kim, R., Alam, Z. H., Mahadevan, V. S., … Thomas, J. D. (2021). Deep Learning Algorithm for Automated Cardiac Murmur Detection Via a Digital Stethoscope Platform. Journal of the American Heart Association, 10(9). https://doi.org/10.1161/JAHA.120.019905
Ghanayim, T., Lupu, L., Naveh, S., Bachner-Hinenzon, N., Adler, D., Adawi, S., Banai, S., & Shiran, A. (2022). Artificial Intelligence-Based Stethoscope for the Diagnosis of Aortic Stenosis. American Journal of Medicine, 135(9), 1124–1133. https://doi.org/10.1016/j.amjmed.2022.04.032
Jusak, J., Puspasari, I., Kusumawati, W. I., & Oktarina, E. S. (2020). Model Identifikasi Sinyal Jantung Pertama (S1) dan Sinyal Jantung Kedua (S2) pada Janin. Jurnal Rekayasa Elektrika, 16(1), 50–56. https://doi.org/10.17529/jre.v16i1.14991
Kambhampati, A. B., & Ramkumar, B. (2021). Automatic Detection and Classification of Systolic and Diastolic Profiles of PCG Corrupted Due to Limitations of Electronic Stethoscope Recording. IEEE Sensors Journal, 21(4), 5292–5302. https://doi.org/10.1109/JSEN.2020.3028373
Lee, S, H., Kim, Y., Yeo, M., Mahmood, M., Zavanelli, N., Chung, C., Young Heo, J., Kim, Y., Jung, S.-S., & Yeo, W.-H. (2022). Fully Portable Continuous Real-Time Auscultation with a Soft Wearable Stethoscope Designed For Automated Disease Diagnosis. Science. Advances, 8(21). https://www.science.org
Lee, S., Wei, Q., Park, H., Na, Y., Jeong, D., & Lim, H. (2021). Development of a Finger-Ring-Shaped Hybrid Smart Stethoscope for Automatic S1 and S2 Heart Sound Identification. Sensors, 21(18). https://doi.org/10.3390/s21186294
Li, Y., Shi, P., Yang, Y., Cui, J., Zhang, G., & Duan, S. (2021). Design and Verification of Magnetic-Induction Electronic Stethoscope Based On MEMS Technology. Sensors and Actuators, A: Physical, 331. https://doi.org/10.1016/j.sna.2021.112951
Luo, Y., Liu, J., Zhang, J., Xiao, Y., Wu, Y., & Zhao, Z. (2023). A Wearable Nanoscale Heart Sound Sensor Based on P(VDF-Trfe)/Zno/GR and its Application in Cardiac Disease Detection. Beilstein Journal of Nanotechnology, 14, 819–833. https://doi.org/10.3762/BJNANO.14.67
Ogawa, S., Namino, F., Mori, T., Sato, G., Yamakawa, T., & Saito, S. (2023). AI Diagnosis of Heart Sounds Differentiated with Super Stethoscope. Journal of Cardiology. https://doi.org/10.1016/j.jjcc.2023.09.007
Quinn, N., Mokhtar, A., Moeller, A., & Ramer, S. (2021). Virtual Cardiology Clinical Skills Teaching for Medical Students Using an Electronic Stethoscope During the COVID-19 Pandemic: Feasibility and Feedback. Canadian Journal of Cardiology, 37(10), 40-41. https://doi.org/10.1016/j.cjca.2021.07.085
Ramesha M, DankanGowda V, Jeevan KM, & Sathisha B M. (2020). Implementation of IoT Based Wireless Electronic Stethoscope. Proceedings of IEEE Third International Conference on Multimedia Processing, Communication & Information Technology – MPCIT 2020 JNNCE. https://doi.org/10.1109/MPCIT51588.2020.9350476
Rennoll, V., McLane, I., Emmanouilidou, D., West, J., & Elhilali, M. (2021). Electronic Stethoscope Filtering Mimics the Perceived Sound Characteristics of Acoustic Stethoscope. IEEE Journal of Biomedical and Health Informatics, 25(5), 1542–1549. https://doi.org/10.1109/JBHI.2020.3020494
Roy, T. S., Roy, J. K., & Mandal, N. (2023). Design of Ear‐Contactless Stethoscope and Improvement in the Performance of Deep Learning Based on CNN to Classify the Heart Sound. Medical and Biological Engineering and Computing, 61, 2417-2439. https://doi.org/10.1007/s11517-023-02827-w
Shi, P., Li, Y., Zhang, W., Zhang, G., Cui, J., Wang, S., & Wang, B. (2022). Design and Implementation of Bionic MEMS Electronic Heart Sound Stethoscope. IEEE Sensors Journal, 22(2), 1163–1172. https://doi.org/10.1109/JSEN.2021.3131001
Suzuki, K., Shimizu, Y., Ohshimo, S., Oue, K., Saeki, N., Sadamori, T., Tsutsumi, Y., Irifune, M., & Shime, N. (2022). Real-Time Assessment of Swallowing Sound Using an Electronic Stethoscope and an Artificial Intelligence System. Clinical and Experimental Dental Research, 8(1), 225–230. https://doi.org/10.1002/cre2.531
Takeda, K., Kasai, H., Hayama, N., Saito, M., Kawame, C., Maruyama, K., & Suzuki, T. (2023). Wireless Electronic Stethoscope’s Potential For Medical Education in Ward Round Examination. Respirology, 28(10), 969–971. https://doi.org/10.1111/resp.14560
Zeinali, Y., & Niaki, S. T. A. (2022). Heart Sound Classification Using Signal Processing and Machine Learning Algorithms. Machine Learning with Applications, 7, 100206. https://doi.org/10.1016/j.mlwa.2021.100206
Copyright (c) 2023 Josua Edison Mangole, Elly Nurachmah, Agung Waluyo, Muhamad Adam
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.