Analisis Model Matematika Penularan Campak dengan Vaksinasi dan Rawat Inap Menggunakan Bifurkasi Transkritikal

Authors

  • Dimaz Wahyu Adipradana Institut Teknologi Sepuluh Nopember

DOI:

https://doi.org/10.31539/eya3st31

Abstract

Measles as one of notifable disease gets serious concern worldwide since it was first found in ninth century. The implementation of vaccines for controlling measles transmission since 1963 up to nowadays requires various studies regarding the efectiveness of the vaccines. The studies of modeling of measles virus transmission has been done by many researchers in Mathematics. In this study, three different models of measles virus transmission that include hospitalization compartment. In the first model, the population is constant, while in the second model, the population dependent by time. The last model, the infected population respect to Holling type II functional response. The model divided the population into Susceptibles ( ), Infectives ( ), Hospitalized ( ), and Recovered ( ) or called SIHR model. The analysis started with determining the the equilibria and their stability based on Basic Reproduction Number ( ). Futhermore, we do bifurcation analysis on those models and find a transcritical bifurcation.

Keywords: Basic Reproduction Number, Equilibrium, Hospitalized, Measles, Transcritical Bifurcation, Vaccination



References

Abadi, A., Fakhruddin, M., Artiono, R., & Prawoto, B. P. (2021). Measles Transmission Model with Vaccination and Hospitalization Treatments. Communication in Biomathematical Sciences, 3(2), 127-134. https://doi.org/10.5614/cbms.2020.3.2.4

Arnolʹd, V. I., & Silverman, R. A. (1978). Ordinary differential equations / V.I. Arnold; translated and edited by Richard A. Silverman. MIT Press.

Atkinson, W., Hamborsky, J., McIntyre, L., & Wolfe, C. (Eds.). (2005). Epidemiology and prevention of vaccine-preventable diseases. U.S. Department of Health & Human Services. https://stacks.cdc.gov/view/cdc/78725

Brauer F. (2005). The Kermack-McKendrick epidemic model revisited. Mathematical biosciences, 198(2), 119–131. https://doi.org/10.1016/j.mbs.2005.07.006

Chueshov, I. (2002) Monotone Random Systems: Theory and Applications. Springer Berlin, Heidelberg. https://doi.org/10.1007/b83277

Coddington, E. A., and Levinson, N. (1955). Theory of Ordinary Differential Equations. Tata McGraw-Hill Education, New York

Diekmann, O., Heesterbeek, J. A., & Roberts, M. G. (2010). The construction of next-generation matrices for compartmental epidemic models. Journal of the Royal Society, Interface, 7(47), 873–885. https://doi.org/10.1098/rsif.2009.0386

Fakhruddin, M., Suandi, D., Sumiati, S., Fahlena, H., Nuraini, N., & Soewono, E. (2020). Investigation of a measles transmission with vaccination: a case study in Jakarta, Indonesia. Mathematical biosciences and engineering : MBE, 17(4), 2998–3018. https://doi.org/10.3934/mbe.2020170

Fragkou, P. C., Thomas, K., Sympardi, S., Liatsos, G. D., Pirounaki, M., Sambatakou, H., Marantos, T., Karofylakis, E., Dourakis, S. P., Tsiodras, S., & Kavvatha, D. (2020). Clinical characteristics and outcomes of measles outbreak in adults: A multicenter retrospective observational study of 93 hospitalized adults in Greece. Journal of clinical virology : the official publication of the Pan American Society for Clinical Virology, 131, 104608. https://doi.org/10.1016/j.jcv.2020.104608

Holling, C. S. (1959). Some Characteristics of Simple Types of Predation and Parasitism. The Canadian Entomologist, 91(7), 385–398. https://doi.org/10.4039/Ent91385-7

Holling, C. S. (1965). The Functional Response of Predators to Prey Density and its Role in Mimicry and Population Regulation. Memoirs of the Entomological Society of Canada, 97(S45), 5–60. https://doi.org/10.4039/entm9745fv

Kloeden, P. E., & Kozyakin, V. (2011). The dynamics of epidemiological systems with nonautonomous and random coefficients. MESA, 2(2), 159–172. https://nonlinearstudies.com/index.php/mesa/article/view/652

Kuznetsov, Y. A. (2013). Elements of applied bifurcation theory (Vol. 112). Springer.

Lee, B., Ying, M., Papania, M. J., Stevenson, J., Seward, J. F., & Hutchins, S. S. (2004). Measles hospitalizations, United States, 1985-2002. The Journal of infectious diseases, 189 Suppl 1, S210–S215. https://doi.org/10.1086/381555

Lotka A. J. (1920). Analytical Note on Certain Rhythmic Relations in Organic Systems. Proceedings of the National Academy of Sciences of the United States of America, 6(7), 410–415. https://doi.org/10.1073/pnas.6.7.410

LYAPUNOV, A. M. (1992). The general problem of the stability of motion. International Journal of Control, 55(3), 531–534. https://doi.org/10.1080/00207179208934253

Mickens, R. E. (1997). Review of An introduction to difference equations, by S. Elaydi. The American Mathematical Monthly, 104(8), 777–780.

Momoh, A. A., Ibrahim, M. O., Uwanta, I. J., & Manga, S. B. (2013). Mathematical model for control of measles epidemiology. International Journal of Pure and Applied Mathematics, 87(5), 707–717. https://doi.org/10.12732/ijpam.v87i5.4

Peter, O. J., Afolabi, O. A., Victor, A. A., Akpan, C. E., & Oguntolu, F. A. (2018). Mathematical model for the control of measles. Journal of Applied Sciences and Environmental Management, 22(4), 571–576. https://doi.org/10.4314/jasem.v22i4.24

Pontryagin, L. S. (1962). Ordinary differential equations (Sect. 2.7). Addison-Wesley

Anis-ur-Rehman, Siddiqui, T. S., & Idris, M. (2008). Clinical outcome in measles patients hospitalized with complications. Journal of Ayub Medical College, Abbottabad : JAMC, 20(2), 14–16. https://pubmed.ncbi.nlm.nih.gov/19385448/

Stahl, J. P., Salmon, D., Bruneel, F., Caumes, E., Freymuth, F., Bru, J. P., Morand, P., Roblot, F., Schmit, J. L., Strady, C., Timsit, J. F., Rabaud, C., & Investigators (2013). Adult patients hospitalized for measles in France, in the 21st century. Medecine et maladies infectieuses, 43(10), 410–416. https://doi.org/10.1016/j.medmal.2013.07.001

Trawicki, M. B. (2017). Deterministic Seirs Epidemic Model for Modeling Vital Dynamics, Vaccinations, and Temporary Immunity. Mathematics, 5(1), 7. https://doi.org/10.3390/math5010007

Tuwankotta, J. M., & Harjanto, E. (2019). Strange attractors in a predator–prey system with non-monotonic response function and periodic perturbation. Journal of Computational Dynamics, 6(2), 469. https://doi.org/10.3934/jcd.2019024

van den Driessche P. (2017). Reproduction numbers of infectious disease models. Infectious Disease Modelling, 2(3), 288–303. https://doi.org/10.1016/j.idm.2017.06.002

van den Driessche, P., & Watmough, J. (2002). Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Mathematical biosciences, 180, 29–48. https://doi.org/10.1016/s0025-5564(02)00108-6

Verguet, S., Johri, M., Morris, S. K., Gauvreau, C. L., Jha, P., & Jit, M. (2015). Controlling measles using supplemental immunization activities: a mathematical model to inform optimal policy. Vaccine, 33(10), 1291–1296. https://doi.org/10.1016/j.vaccine.2014.11.050

Volterra, V. (1928). Variations and fluctuations of the number of individuals in animal species living together. ICES Journal of Marine Science, 3(1), 3–51. https://doi.org/10.1093/icesjms/3.1.3

Wiggins, S., & Golubitsky, M. (1990). Introduction to applied nonlinear dynamical systems and chaos (Vol. 2). Springer.

Wong, R. D., & Goetz, M. B. (1993). Clinical and laboratory features of measles in hospitalized adults. The American journal of medicine, 95(4), 377–383. https://doi.org/10.1016/0002-9343(93)90306-a

Liu, H., & Tian, X. (2020). Data-driven optimal control of a SEIR model for COVID-19 (arXiv:2012.00698). arXiv. https://arxiv.org/abs/2012.00698

Downloads

Published

2025-12-31