Proses Desain Pada Perancangan Dashboard Pemantauan Penjualan Produk PT. XYZ

  • Velline Samantha
  • Tasya Mulia Salsabila
  • Angeline Carolina Wijaya
  • Dedi Trisnawarman
  • Jap Tji Beng Universitas Tarumanagara

Abstract

Perancangan desain dashboard penjualan menjadi komponen krusial dalam mendukung efisiensi analisis data dan pengambilan keputusan di perusahaan. Proses ini melibatkan integrasi berbagai elemen visual yang mencakup penggunaan Data Analytics, Decision Support System (DSS), serta desain Human Machine Interface (HMI). Desain dashboard yang efektif tidak hanya mengutamakan penyajian data secara komprehensif, tetapi juga memfokuskan pada aspek visual, seperti pemilihan warna, tata letak, dan format tampilan yang intuitif. Penelitian ini bertujuan untuk merancang dashboard pemantauan penjualan produk di PT. XYZ yang berorientasi pada Key Performance Indicator (KPI) perusahaan, dengan penekanan pada desain user-friendly. Desain yang baik akan memudahkan pengguna dalam memahami data dan meningkatkan efektivitas pemantauan performa penjualan.

References

Allen, L., Atkinson, J., Jayasundara, D., Cordiner, J., & Moghadam, P. Z. (2021). Data visualization for Industry 4.0: A stepping-stone toward a digital future, bridging the gap between academia and industry. Patterns (New York, N.Y.), 2(5), 100266. https://doi.org/10.1016/j.patter.2021.100266
Bany Mohammed, A., Al-Okaily, M., Qasim, D., & Khalaf Al-Majali, M. (2024). Towards an understanding of business intelligence and analytics usage: Evidence from the banking industry. International Journal of Information Management Data Insights, 4(1), 100215. https://doi.org/10.1016/j.jjimei.2024.100215
Branch, R. M. (2014). Instructional design: The ADDIE approach. Springer US.
Crompton, H., Jones, M. V., Sendi, Y., Aizaz, M., Nako, K., Randall, R., & Weisel, E. (2024). Examining technology use within the ADDIE framework to develop professional training. European Journal of Training and Development, 48(3/4), 422–454. https://doi.org/10.1108/EJTD-12-2022-0137
Gurcan, F., Boztas, G. D., Dalveren, G. G. M., & Derawi, M. (2023). Digital transformation strategies, practices, and trends: A large-scale retrospective study based on machine learning. Sustainability, 15(9), 7496. https://doi.org/10.3390/su15097496
Hjelle, S., Mikalef, P., Altwaijry, N., & Parida, V. (2024). Organizational decision making and analytics: An experimental study on dashboard visualizations. Information & Management, 61(6), 104011. https://doi.org/10.1016/j.im.2024.104011
Houlahan, P. (2024). Prototyping Python dashboards for scientists and engineers: Build and deploy a complete dashboard with Python. Apress.
Khan, A. (2024). Visual analytics for dashboards: A step-by-step guide to principles and practical techniques. Apress.
Kraus, S., Jones, P., Kailer, N., Weinmann, A., Chaparro-Banegas, N., & Roig-Tierno, N. (2021). Digital transformation: An overview of the current state of the art of research. SAGE Open, 11(3), 215824402110475. https://doi.org/10.1177/21582440211047576
Martins, A., Martins, P., Caldeira, F., & Sá, F. (2020). An evaluation of how big-data and data warehouses improve business intelligence decision making. In Trends and innovations in information systems and technologies (pp. 609–619). Springer International Publishing.
Nadj, M., Maedche, A., & Schieder, C. (2020). The effect of interactive analytical dashboard features on situation awareness and task performance. Decision Support Systems, 135(113322), 113322. https://doi.org/10.1016/j.dss.2020.113322
Spector, J. M., Lockee, B. B., & Childress, M. D. (Eds.). (2023). Learning, design, and technology: An international compendium of theory, research, practice, and policy. Springer International Publishing.
Verhoef, P. C., Broekhuizen, T., Bart, Y., Bhattacharya, A., Qi Dong, J., Fabian, N., & Haenlein, M. (2021). Digital transformation: A multidisciplinary reflection and research agenda. Journal of Business Research, 122, 889–901. https://doi.org/10.1016/j.jbusres.2019.09.022
Wang, X., Wang, N., Sun, W., Xu, A., & Zhang, Z. (2024). Digital transformation and enterprise violation risk: A ‘motivation-opportunity-attitude’ framework. Heliyon, 10(20), e39125. https://doi.org/10.1016/j.heliyon.2024.e39125
Yaseen, S. G. (Ed.). (2022). Digital economy, business analytics, and big data analytics applications. Springer International Publishing.
Published
2024-11-21
Abstract viewed = 0 times
PDF downloaded = 0 times

Most read articles by the same author(s)