Diagnosa Preeklampsia pada Ibu Hamil Menggunakan Sistem Informasi Berbasis Web

  • Fajaria Nur Aini Program Studi D3 Kebidanan Purwokerto, Poltekkes Kemenkes Semarang
  • Melyana Nurul Widyawati Program Pascasarjana, Poltekkes Kemenkes Semarang
  • Bedjo Santoso Program Pascasarjana, Poltekkes Kemenkes Semarang

Abstract

The aims of this research are to produce a diagnosis system for preeclampsia with online system and to determine the time differences to diagnose preeclampsia using a web-based information system and  using manual system. This research method is to formulate a framework, which is to compile a web-based information system framework then apply it to pregnant women. The research design used was quasi experimental with post test only with control group. This research was conducted at the Puskesmas. The sampling technique used is non probability sampling with purposive sampling, with a sample number of 66 respondents. The intervention group (n = 33) used an information system, while the control group (n = 33) used a manual checklist. The results showed that the majority of respondents were healthy pregnant women, namely in the intervention group a total of 20 pregnant women (30.30%) and in the control group of 15 pregnant women (22.73%). The smallest number of diagnoses is in the case of superimposed preeclampsia. Web-based information systems are also able to increase the speed of diagnosis to reach 7.21%. The results of statistical tests using Independent T-Test obtained P-value of 0.041 <0.05 (α), so that Ha was accepted and Ho was rejected, in other words there was a difference in the time of diagnosis of preeclampsia using a web-based information system with a manual system.

 

Keywords: Diagnosis, Preeclampsia, Information Systems, Web

References

Abu, A. D. K. H., Kusumawati, Y. & Werdani, K. E. (2017). Hubungan Karakteristik Bidan dengan Mutu Pelayanan Antenatal Care Berdasarkan Standar Operasional. Jurnal Kesehatan Masyarakat Andalas, 10, 94-100.

Allen, R., Rogozinska, E., Sivarajasingam, P., Khan, K. S. & Thangaratinam, S (2014). Effect of Diet‐And Lifestyle‐Based Metabolic Risk‐Modifying Interventions on Preeclampsia: A Meta‐Analysis. Acta Obstetricia Et Gynecologica Scandinavica, 93, 973-985.

Bakibinga, P., Kamande, E., Omuya, M., Ziraba, A. K. & Kyobutungi, C. (2017). The Role of A Decision-Support Smartphone Application in Enhancing Community Health Volunteers’ Effectiveness to Improve Maternal and Newborn Outcomes in Nairobi, Kenya: Quasi-Experimental Research Protocol. Bmj Open, 7, E014896.

English, F. A., Kenny, L. C. & Mccarthy, F. P (2015). Risk Factors and Effective Management Of Preeclampsia. Integrated Blood Pressure Control, 8, 7.

Fatkhiyah, N. (2015). Motivasi, Kualitas Supervisi dan Kepatuhan Bidan dalam Mendeteksi Preeklampsia. Jurnal Kesehatan Masyarakat, 10, 195-202.

Graham, W., Woodd, S., Byass, P., Filippi, V., Gon, G., Virgo, S., Chou, D., Hounton, S., Lozano, R., Pattinson, R. & Singh, S. (2016). Diversity and Divergence: The Dynamic Burden of Poor Maternal Health. The Lancet, 388, 2164-2175.

Padila, P. (2016). Asuhan Keperawatan Maternity II. Yogyakarta: Nuha Medika.

Padila, P., Lina, L., Febriawati, H., Agustina, B., & Yanuarti, R. (2018). Home Visit Berbasis Sistem Informasi Manajemen Telenursing. Jurnal Keperawatan Silampari, 2(1), 217-235. https://doi.org/https://doi.org/10.31539/jks.v2i1.305.

Padila, P., Amin, M., & Rizki, R. (2018). Pengalaman Ibu dalam Merawat Bayi Preterm yang Pernah dirawat di Ruang Neonatus Intensive Care Unit Kota Bengkulu. Jurnal Keperawatan Silampari, 1(2), 1-16. https ://doi.org /https: //doi.org /10.31539 /jks. v1i2.82.

Park, H. J., Kim, S. H., Jung, Y. W., Shim, S. S., Kim, J. Y., Cho, Y. K., Farina, A., Zanello, M., Lee, K. J. & Cha, D. H. (2014). Screening Models Using Multiple Markers for Early Detection of Late-Onset Preeclampsia in Low-Risk Pregnancy. Bmc Pregnancy and Childbirth, 14, 35.

Park, H. J., Shim, S. S. & Cha, D. H. (2015) Combined Screening for Early Detection of Pre-Eclampsia. International Journal of Molecular Sciences, 16, 17952-17974.

Rana, S., Karumanchi, S. A. & Lindheimer, M. D. (2014). Angiogenic Factors in Diagnosis, Management, and Research in Preeclampsia. Hypertension, 63, 198-202.

Shiferaw, S., Spigt, M., Tekie, M., Abdullah, M., Fantahun, M. & Dinant, G.-J. (2016). The Effects Of A Locally Developed Mhealth Intervention on Delivery and Postnatal Care Utilization; A Prospective Controlled Evaluation Among Health Centres in Ethiopia. Plos One, 11, E0158600.

Tagare, H. D., Rood, K. & Buhimschi, I. (2014). A. An Algorithm to Screen for Preeclampsia Using A Smart Phone. Healthcare Innovation Conference (Hic). IEEE, 52-55.

Utami, D. H. N. & Nuryati, S. (2015). Evaluasi Ketepatan Reseleksi Diagnosis Utama Sebelum dan Setelah Verifikasi pada Kasus Pasien BPJS di Rumah Sakit Hidayah Boyolali. Universitas Gadjah Mada.

Warren, C. E., Abuya, T., Kanya, L., Obare, F., Njuki, R., Temmerman, M. & Bellows, B. (2015). A Cross Sectional Comparison Of Postnatal Care Quality in Facilities Participating in A Maternal Health Voucher Program Versus Non-Voucher Facilities In Kenya. Bmc Pregnancy And Childbirth, 15, 153.

Wibowo,Irwinda, Frisdiantiny, Karkata, Mose, Chalid. (2016). Pedoman Nasional Pelayanan Kedokteran Diagnosis dan Tatalaksana Pre-Eklampsia, Jakarta, Perkumpulan Obstetri dan Ginekologi Indonesia Himpunan Kedokteran Feto Maternal.

Wójtowicz, A., Żywica, P., Stachowiak, A. & Dyczkowski, K. (2016). Solving the Problem of Incomplete Data in Medical Diagnosis Via Interval Modeling. Applied Soft Computing, 47, 424-437.

Wright, D., Syngelaki, A., Akolekar, R., Poon, L. C. & Nicolaides, K. H. (2015). Competing Risks Model in Screening for Preeclampsia by Maternal Characteristics and Medical History. American Journal of Obstetrics & Gynecology, 213, 62. E1-62. E10.
Published
2019-03-30
How to Cite
Aini, F., Widyawati, M., & Santoso, B. (2019). Diagnosa Preeklampsia pada Ibu Hamil Menggunakan Sistem Informasi Berbasis Web. Jurnal Keperawatan Silampari, 2(2), 18-27. https://doi.org/https://doi.org/10.31539/jks.v2i2.508
Abstract viewed = 15 times
pdf downloaded = 16 times