Prediksi Fine Fuel Moisture Code Menggunakan Algoritma Random Forest untuk Sistem Peringatan Dini Kebakaran Hutan

Authors

  • Sri Mulyaningsih Universitas Negeri Semarang
  • Wahyu Hardyanto Universitas Negeri Semarang
  • Alpon Sepriando Badan Meteorologi Klimatologi dan Geofisika (BMKG)
  • Djuniadi Universitas Negeri Semarang

DOI:

https://doi.org/10.31539/xy82p541

Abstract

This study aims to predict the Fine Fuel Moisture Code (FFMC) as an indicator of the ignitability level of natural fuels using the Random Forest algorithm. FFMC is an essential component of fire danger rating systems, used to describe the dryness level of fine fuels; therefore, accurate prediction is crucial for forest and land fire mitigation efforts. The research utilizes meteorological variables—including maximum temperature, relative humidity, wind speed, and rainfall—as input parameters. The model implementation is carried out in Google Colab using the Python programming language, accompanied by hyperparameter tuning through GridSearchCV to obtain the most optimal model configuration.The results indicate that relative humidity and rainfall are the most influential meteorological features in predicting FFMC. The developed Random Forest model demonstrates excellent performance, as reflected by a Mean Squared Error of 8,875 and an R-squared value of 0,974, which signifies a very high predictive capability. These findings confirm that the machine-learning approach based on Random Forest is able to produce precise FFMC estimations, thereby giving the model strong potential for integration into early warning systems for forest and land fires. Such integration would support decision-making processes, enhance the effectiveness of mitigation strategies, and strengthen preparedness in managing fire-related risks.

 

Keywords: Fine Fuel Moisture Code, Fire Danger Prediction, Meteorological Features, Machine Learning, Random Forest.

Author Biographies

  • Wahyu Hardyanto, Universitas Negeri Semarang

    Dosen 

  • Alpon Sepriando, Badan Meteorologi Klimatologi dan Geofisika (BMKG)

    Badan Meteorologi Klimatologi dan Geofisika (BMKG) 

  • Djuniadi, Universitas Negeri Semarang

    Dosen 

References

Ellis, T. M., Bowman, D. M. J. S., Jain, P., Flannigan, M. D., & Williamson, G. J. (2022). Global Increase in Wildfire Risk Due to Climate‐Driven Declines in Fuel Moisture. Global Change Biology, 28(4), 1544–1559. https://doi.org/10.1111/gcb.16006

Fan, C., & He, B. (2021). A Physics-Guided Deep Learning Model for 10-h Dead Fuel Moisture Content Estimation. Forests, 12(7), 933. https://doi.org/10.3390/f12070933

Ferrer Palomino, A., Sánchez Espino, P., Borrego Reyes, C., Jiménez Rojas, J. A., & Rodríguez y Silva, F. (2022). Estimation of moisture in Live Fuels in The Mediterranean: Linear Regressions And Random Forests. Journal of Environmental Management, 322, 116069. https://doi.org/10.1016/j.jenvman.2022.116069

Hayajneh, S. M., & Naser, J. (2025). Wind and Slope Influence on Wildland Fire Spread, a Numerical Study. Fire, 8(6), 217. https://doi.org/10.3390/fire8060217

Jones, M. W., Smith, A., Betts, R., Canadell, J. G., Prentice, I. C., & Le Qu’er’e, C. (2020). Climate Change Increases the Risk of Wildfires. http://www.jstor.org/stable/resrep51248

Lee, H., Won, M., Yoon, S., & Jang, K. (2020). Estimation of 10-Hour Fuel Moisture Content Using Meteorological Data: A Model Inter-Comparison Study. Forests, 11(9), 982. https://doi.org/10.3390/f11090982

Lei, W.-D., Yu, Y., Li, X.-H., & Xing, J. (2022). Estimating dead Fine Fuel Moisture Content of Forest Surface, Based on Wireless Sensor Network and Back-Propagation Neural Network. International Journal of Wildland Fire, 31(4), 369–378. https://doi.org/10.1071/WF21066

Masinda, M. M., Li, F., Liu, Q., Sun, L., & Hu, T. (2021). Prediction Model of Moisture Content of Dead Fine Fuel in Forest Plantations on Maoer Mountain, Northeast China. Journal of Forestry Research, 32(5), 2023–2035. https://doi.org/10.1007/s11676-020-01280-x

Maulia, S. T. (2024). Analisis Dampak Polusi Udara Akibat Kebakaran Hutan dan Lahan Serta Upaya Pengurangannya dalam Mempertahankan Ketahanan Energi. Jurnal Ketahanan Nasional, 29(3). https://doi.org/10.22146/jkn.92761

Probst, P., Wright, M. N., & Boulesteix, A. (2019). Hyperparameters and Tuning Strategies for Random Forest. WIREs Data Mining and Knowledge Discovery, 9(3). https://doi.org/10.1002/widm.1301

Sadeghi, M. S., Ghodrat, M., Sutherland, D., Simeoni, A., Sharples, J., & Kleine, H. (2025). Numerical Investigation of The Effect of Wind, Slope and Fuel Moisture on The Radiative and Convective Heating of Excelsior Fuels. International Journal of Wildland Fire, 34(4). https://doi.org/10.1071/WF24115

Shekar, B. H., & Dagnew, G. (2019). Grid Search-Based Hyperparameter Tuning and Classification of Microarray Cancer Data. 2019 2nd International Conference on Advanced Computational and Communication Paradigms, ICACCP 2019, February, 1–8. https://doi.org/10.1109/ICACCP.2019.8882943

Turnip, H. A. (2021). Collaborative Governance dalam Penanganan Masalah Kebakaran Hutan dan Lahan di Provinsi Riau. Suparyanto Dan Rosad (2015, 5(3), 248–253.

Wagner, C. E. Van, Forest, P., & Station, E. (1974). Structure of the Canadian. Canadian Forestry Service Publication, 1333.

Zhang, Z., Tan, L., & Tiong, R. (2024). Research on Fire Accident Prediction and Risk Assessment Algorithm Based on Data Mining and Machine Learning. Advances in Continuous and Discrete Models, 2024(1). https://doi.org/10.1186/s13662-024-03845-0

Downloads

Published

2025-12-30