Perbandingan Metode Multi Analysis Surface Wave dan Metode HVSR dengan Mengidentifikasi Karakteristik Bawah Permukaan Jaringan Monitoring Gempabumi Wilayah Jawa Tengah

Authors

  • Retno Yogi Widjayanti Universitas Negeri Semarang
  • M. Aryono Adhi Universitas Negeri Semarang
  • Sigit Pramono Badan Meteorologi Klimatologi Geofisika (BMKG) Pusat Jakarta
  • Aditya Setyo Rahman Badan Meteorologi Klimatologi Geofisika (BMKG) Pusat Jakarta
  • Moh.Iqbal Tawakal Badan Meteorologi Klimatologi Geofisika (BMKG) Pusat Jakarta
  • Adam Ardiansyah Universitas Negeri Semarang

DOI:

https://doi.org/10.31539/2y7srw09

Keywords:

Amplification, MASW, sensor, shear wave , Vs30.

Abstract

A region’s geological medium provides distinct local features that affect the propagation of seismic waves. This study looked at subsurface conditions down to 30 meters in order to assess the potential for seismic wave amplification during earthquakes. This research aims to determine the subsurface characteristics using the shear wave (Vs) parameters obtained using the multichannel analysis of surface waves (MASW) method.Twenty-four vertical geophones with a natural frequency of 4.5 Hz were subjected to the MASW technique. Through shear wave analysis, site classification was conducted referring to the Indonesian National Standard (SNI) 1726:2019, enabling evaluation of potential amplification across various sites. Reference sensors were selected from locations across Central Java, including the MBJI (Banjarnegara), KWJI (Wonosobo), KBJN and GTJI (Temanggung), GBJI (Batang), NSM01 (Central Semarang), SMRI and SMRIB (Tembalang), and BOJI (Boyolali).The lowest Vs30 value (165.1 m/s) was recorded at site NSM01 (Pendrikan Kidul, Central Semarang), while the highest (1868 m/s) was recorded at MBJI (Majalengka, Banjarnegara). Most reference sites were classified as Site Class C (very dense soil and soft rock). However, NSM01 was categorized as Site Class E (Soft Soil), indicating a higher potential for ground motion amplification, while MBJI presented minimal amplification risk due to its hard rock base.The findings highlight the importance of subsurface characterization for seismic hazard mitigation. The variation in Vs30 across the study sites reflects the lithological differences that directly affect the ground response during seismic events. Therefore, MASW provides essential data for improving earthquake-resistant infrastructure planning in Central Java.

Author Biographies

  • M. Aryono Adhi, Universitas Negeri Semarang

    Dosen 

  • Sigit Pramono, Badan Meteorologi Klimatologi Geofisika (BMKG) Pusat Jakarta

    Balai Besar Meteorologi, Klimatologi dan Geofisika Wilayah II Tangerang Selatan

  • Aditya Setyo Rahman, Badan Meteorologi Klimatologi Geofisika (BMKG) Pusat Jakarta

    Badan Meteorologi Klimatologi Geofisika (BMKG) Pusat Jakarta

  • Moh.Iqbal Tawakal, Badan Meteorologi Klimatologi Geofisika (BMKG) Pusat Jakarta

    Badan Meteorologi Klimatologi Geofisika (BMKG) Pusat Jakarta

References

Aminah, R., Sungkono, & Santosa, B. J. (2015). Pengembangan Inversi Gelombang Rayleigh pada Gibson Half-Space Berbasis Levenberg-Marquardt (L-M) Dan Singular Value Decomposition (SVD). Jurnal Sains dan Seni Pomits, 1, 1–10. https://repository.its.ac.id/cgi/users/login

Amirudin, I. M., Madrinovella, I., & Palu, S. (2023). Seismic Vulnerability Analysis Using HVSR on The West Palu Bay Coastline. Journal of Geoscience, Engineering, Environment and Technology, 8(2). https://doi.org/10.25299/jgeet.2023.8.02.2.13879

Anggraeni, E. F., Supriyatna, M., Mahesa, M. P., Soni, U., & Nasruloh, R. (2025). Evaluasi Indeks Kerentanan Seismik dengan Metode HVSR. Strength: Jurnal Penelitian Teknik Mesin, 2(1), 33–41.

Arai, H., & Tokimatsu, K. (2005). S-Wave Velocity Profiling By Joint Inversion of Microtremor Dispersion Curve and H/V Spectrum. Bulletin of the Seismological Society of America, 95(5), 1766–1778. https://doi.org/10.1785/0120040243

Ardiansyah, A., Adhi, M. A., Wibowo, N. B., Sarwi, S., Astuti, B., & Cindiwati, C. (2024). Seismic Vulnerability Microzonation Menggunakan HVSR di Wonosobo. Jurnal Fisika UNNES, 14(2). https://journal.unnes.ac.id/journals/jf/article/view/10851

Badan Standardisasi Nasional. (2019). Tata cara perencanaan ketahanan gempa untuk struktur bangunan gedung dan non gedung (SNI 1726:2019). BSN.

Bard, P., Duval, A., Koehler, A., & Rao, S. (2004). SESAME European Research Project, SESAME: Site Effects Assessment Using Ambient Excitations (Vol. D23.12, December, pp. 62). https://sesame.geopsy.org/Delivrables/Del-D24-Wp13.pdf

Budi, R., Santoso, I., & Prasetya, A. (2021). Combination of Passive Seismic (HVSR) and Active Seismic (MASW) Methods To Obtain Shear Wave Velocity Model of Subsurface in Majalengka, Indonesia. Journal of Applied Geophysics. https://www.doi.org 10.1088/1742-6596/1805/1/012002

C. B. Park, R. D. Miller, & Xia, J. (2001). Multichannel Analysis of Surface Waves. Geophysics, 64(3), 800–808. https://doi.org/10.1190/1.1444590

Desmonda, N., Desmonda, N. I., & Pamungkas, A. (2014). Penentuan Zona Kerentanan Bencana Gempa Bumi Tektonik di Kabupaten Malang Wilayah Selatan. Jurnal Teknik ITS, 3(2), C107–C112. http://ejurnal.its.ac.id/index.php/teknik/article/view/7232

Di Giacomo, D., Pierdominici, S., Stecchi, F., & Giocoli, A. (2020). Combined Use of Refraction Seismic, MASW, and Ambient Noise Array Measurements to Determine The Near-Surface Velocity Structure in the Selinunte Archaeological Park, SW Sicily. Journal of Seismology. https://doi.org/10.1007/s10950-020-09909-4

Endekan, R. A., Tamuntuan, G. H., Tongkukut, S. H. J., & As’ari. (2023). Pemetaan Bawah Permukaan Melalui Pemodelan 3D Data Geolistrik Resistivitas Daerah Pra TPA Ilo-Ilo. In Jurnal Lppm Bidang Sains Dan Teknologi (Vol. 8, Issue 2, pp. 78–84). https://doi.org/10.35801/jlppmsains.8.2.2023.48972

Fabozzi, S., Catalano, S., Falcone, G., Naso, G., Pagliaroli, A., Peronace, E., Porchia, A., Romagnoli, G., & Moscatelli, M. (2021). Stochastic Approach to Study The Site Response In Presence of Shear Wave Velocity Inversion: Application to Seismic Microzonation Studies in Italy. Engineering Geology, 280, 105914. https://doi.org/10.1016/j.enggeo.2020.105914

Fadhilah, F. H., Yudistira, T., & Sopyan, Y. (2022). Pemetaan Respons Dinamik Tanah dan Pemodelan Struktur Bawah Permukaan di Kertajati Menggunakan Metode HVSR. Jurnal Geofisika, 20(2), 52–56. https://doi.org/10.36435/jgf.v20i2.545

Farduwin, A., Dewi Pinem, J. C., & Styawan, Y. (2024). Pemanfaatan Metode HVSR untuk Studi Karakteristik Tanah di Tanjung Kemala, Kabupaten Tanggamus. Jurnal Geosaintek, 10(2), 106–122. https://doi.org/10.12962/j25023659.v10i2.1619

Gorstein, S., & Ezersky, M. (2015). Combination of HVSR and MASW Methods to Obtain Shear Wave Velocity Model of Subsurface in Israel. International Journal of Geophysics. https://doi.org/10.15273/ijge.2015.01.004

Gutenberg, B. (1958). Caustics Produced By Waves Through The Earth's Core. Geophysical Journal International, 1(3), 238–248. https://academic.oup.com/gji/article-abstract/1/3/238/606145

Herak, M. (2008). Model HVSR – A Matlab Tool to model HVSR of Ambient Noise. Computers & Geosciences, 34, 1514–1526. https://doi.org/10.1016/j.cageo.2007.07.009

Downloads

Published

2025-12-13