Model Regresi Linier Berganda untuk Peramalan Hasil Panen Kelapa Sawit

Authors

  • Ade Yuri F Damanik Universitas Islam Negeri Sumatera Utara
  • Armansyah Armansyah Universitas Islam Negeri Sumatera Utara

DOI:

https://doi.org/10.31539/38c7q867

Keywords:

Produksi Minyak Kelapa Sawit; Regresi Linier; Peramalan; Hasil Pertanian; Pengaruh Iklim; Manajemen Perkebunan

Abstract

This study aims to forecast oil palm production using a multiple linear regression model by considering the relationships among several independent variables: rainfall , number of productive trees , harvested area , labor , fertilizer use , and a seasonal variable . Using secondary data from the company’s Daily Work Logs (Lembar Kerja Harian/LKH), the study employs the Ordinary Least Squares (OLS) estimator to obtain the coefficient vector. The results show a coefficient of determination  of 65%, indicating that 65% of the variation in production can be explained by the input variables. The findings indicate that rainfall has a negative coefficient (-0.34305) suggesting a non-linear and inconsistent relationship with production levels. Thus, the study concludes that internal plantation factors—such as the number of productive trees play a more dominant role in increasing yield, whereas higher rainfall tends to negatively affect production.

 

Keywords: Palm Oil Production, Linear Regression, Forecasting, Agricultural Yield, Climatic Influence, Plantation Management.

References

Abdulhamed, M. A., Mustafa, H. I., & Othman, Z. I. (2021). A Hybrid Analysis Model Supported By Machine Learning Algorithm and Multiple Linear Regression to Find Reasons for Unemployment of Programmers in Iraq. Telkomnika (Telecommunication Computing Electronics And Control), 19(2), 444–453. https://doi.org/10.12928/telkomnika.v19i2.16738

Adhiva, J., Ayunda Putri, S., & Genjang Setyorini, S. (2020). Prediksi Hasil Produksi Kelapa Sawit Menggunakan Model Regresi pada Pt. Perkebunan Nusantara V Sntiki.1(2), 152–162. https://ejournal.uin-suska.ac.id/index.php/sntiki/article/view/11185

Ahmad, F. (2020). Penentuan Metode Peramalan pada Produksi Part New Granada Bowl St di PT.X. Jisi: Jurnal Integrasi Sistem Industri, 7(1), 31. https://doi.org/10.24853/jisi.7.1.31-39

Andrianto, R., & Irawan, F. (2023). Implementasi Metode Regresi Linear Berganda pada Sistem Prediksi Jumlah Tonase Kelapa Sawit di PT. Paluta Inti Sawit. Jurnal Tambusai, 1 (1), 2926–2936. https://doi.org/https://doi.org/10.31004/jptam.v7i1.5658

Eliza, A. L., Manalu, D. R., & Yohanna, M. (2024). Prediksi Harga Kelapa Sawit Menggunakan Metode Regresi Linear Berganda Studi Kasus PT. Bakrie Sumatera Plantations, Tbk. Methomika Jurnal Manajemen Informatika Dan Komputerisasi Akuntansi, 8(1), 89–95. https://doi.org/10.46880/jmika.vol8no1.pp89-95

Emmanuel Chandra Wijaya, S., & Widjaja, A. (2022). Prediksi Jumlah Mahasiswa yang Masuk Ke Universitas Kristen Maranatha Menggunakan Regresi Linier, Jurnal Strategi,4(1).175-184, https://www.strategi.it.maranatha.edu/index.php/strategi/article/view/344

Hariningrum, R., Yogatama, C., & Utomo, S. B. (2024). Pemodelan Estimasi Kelulusan Mahasiswa Berbasis Data Akademik Melalui Regresi Linier Berganda, 9(1). https://doi.org/10.35314/isi.v9i1.4034

Haryadi, D., Umi Atmaja, D. M., & Kuncoro, A. (2024). Prediction of Biodiesel Fuel Prices Using Multiple Linear Regression Algorithms. Jitk (Jurnal Ilmu Pengetahuan Dan Teknologi Komputer), 9(2), 180–187. https://doi.org/10.33480/jitk.v9i2.4381

Herawati, E., & Taury Rafly, M. (2020). Penentuan Jumlah Tenaga Kerja Optimal Bagian Pemanenan Berdasarkan Analisis Beban Kerja di PT. Equalindo Makmur Alam Sejahtera. Jurnal Agriment, 5(2). https://media.neliti.com/media/publications/341173-penentuan-jumlah-tenaga-kerja-optimal-ba-88d8d129.pdf

Hermansyah, Asrul Abdullah2, & Putri Yuli Utami. (2024). Penerapan Metode Regresi Linier Berganda Untuk memprediksi Panen Kelapa Sawit. Jurnal Pregresif, 20(1) https://doi.org/http://dx.doi.org/10.35889/progresif.v20i1.1816

Iriany, A., Achmad, A., & Fernandes, R. (2024). Penambahan Metode Neural Network dalam Pemodelan Gstar-Sur untuk Mengatasi Kasus Non Linier pada Peramalan Data Curah Hujan. Journal Unesa 12(1), 226–236. https://ejournal.unesa.ac.id/index.php/mathunesa/article/view/55439

Jordyan A. Cahyono, J., A. & Aryanny, E. (2023). Analisa Peramalan (Forecasting ) Permintaan Kalibrasi Departemen Iso, Standarisasi & Kalibrasi Divisi Technology & Quality Assurance PT. Pal Indonesia Menggunakan Metode Timeseries. Jurnal Scientica, 1 (3), 324–336. https://doi.org/https://doi.org/10.572349/scientica.v1i3.600

Mulyani, Y., & Sarosa, M. (2023). Analisis Perbandingan Multiple Regression dan Priority Quadrant terhadap Kepuasan Mahasiswa Dalam E-Learning Menggunakan Metode Servqual. Jurnal Edukasi Dan Penelitian Informatika. Jepin Jurnal Edukasi Dan Penelitian Informatika, 9(1). https://doi.org/https://doi.org/10.26418/jp.v9i1.58534

Prasetyo, A. (2021). Prediksi Produksi Kelapa Sawit Menggunakan Metode Regresi Linier Berganda. Jurnal Multimedia & Jaringan, 6(2). https://doi.org/http://dx.doi.org/10.30811/jim.v6i2.2343

Safitri, M., Zakiah, N., & Tinggi Agama, S. (2023). Implementasi Penerapan Fungsi Nonliner Dalam Matematika Ekonomi pada Kehidupan Sehari-hari. Jurnal AL-AQLU, 2(1) https://doi.org/https://doi.org/10.59896/aqlu.v2i1.39

Downloads

Published

2025-08-31