Analisa Produksi Panas Radiogenik, Densitas dan Kecepatan Seismik dari Singkapan Batu Granit Panas Bumi Nyelanding, Bangka Selatan
Abstract
The purpose of this study was to determine the analysis of radiogenic heat production, density and seismic velocity of the outcrops of the South Bangka Nyelanding geothermal rock. The X-ray Fluorescence (XRF) method is applied to obtain heat-carrying radioactive elements in the form of Uranium, Thorium and Potassium and other oxides which are useful for studying seismic density and velocity. The main oxides used in this study were SiO2, TiO2, Al2O3, MgO, CaO, K2O and P2O5. The results showed that the density increased from the composition of the mineral felsic (acid) - mafic (base). Conclusion, as for the relationship with heat production, the SiO2 and P2O5 elements experienced a significant decrease compared to other oxides. As for seismic velocity, the results show that seismic velocity has a strong correlation with density.
Keywords: Radiogenic Heat Production, Seismic Velocity, Density, Oxides
References
Ashwal, L. D., Morgan, P., Kelley, S. A., & Percival, J. A. (1987). Heat Production in an Archean Crustal Profile and Implications for Heat Flow and Mobilization of Heat-Producing Elements. Earth and Planetary Science Letters, 85(4), 439–450. https://doi.org/10.1016/0012-821X(87)90139-7
Aydin, A., Ferré, E. C., & Aslan, Z. (2007). The Magnetic Susceptibility of Granitic Rocks as a Proxy for Geochemical Composition : Example from the Saruhan Granitoids, Ne Turkey the Magnetic Susceptibility of Granitic Rocks as a Proxy for Geochemical Composition : Example from the Saruhan Granitoi. Tectonophysics, 44(May 2007), 85–95. https://doi.org/10.1016/j.tecto.2007.04.009
Baltaztis. E, J., & Mitropulos, E. (1992). The Main Granitic Intrusions of Greece : an Application of Trace Element Discrimination. Mineral Magazine, 56(December), 487–501
Behn, M., & Kelemen, P, B. (2003). Relationship Between Seismic P-Wave Velocity and the Composition of Anhydrous Igneous and Meta-Igneous Rocks. Geochemistry, Geophysics, Geosistems, 1041(4)
Brady, R. J., Ducea, M. N., Kidder, S. B., & Saleeby, J. B. (2006). The Distribution of Radiogenic Heat Production as a Function of Depth in the Sierra Nevada Batholith, California. Lithos, 86(3–4), 292–244. https://www.sciencedirect.com/science/article/pii/S0024493705001301
Brown, G. ., & Musset, A. . (1993). The Inaccessible Earth an integrated view to its (2nd ed.). Chapman & Hall Row
Chiozzi, P., Pasquale, V., Verdoya, M., & Furfaro, V. (2008). Hydrothermal Alteration Inferred from a Radiometric Survey on Lipari (Aeolian Islands, Italy). Environmental Semeiotics, 1(1), 70–82. https://doi.org/10.3383/es.1.1.5
Hasterok, D., & Webb, J. (2017). On the Radiogenic Heat Production of Igneous Rocks. Geoscience Frontiers, 8(5), 919–940. https://doi.org/10.1016/j.gsf.2017.03.006
He, Z. Y., Xu, X. S., & Niu, Y. (2010). Petrogenesis and Tectonic Significance of a Mesozoic Granite-Syenite-Gabbro Association from Inland South China. Lithos, 119(3–4), 621–641. https://doi.org/10.1016/j.lithos.2010.08.016
Lamas, R., Miranda, M., Neves, L., & Pereira, A. (2015). Radiogenic heat Production from a Deep Borehole in the Beiras Granite (Almeida, Central Portugal). Energy for Sustainability, June, 1–5
Ngadenin, N., Syafeul, H., Widana, K. S., Sukadana, I. G., & Indrastomo, F. D. (2014). Studi Potensi Thorium pada Batuan Granit di Pulau Bangka. Jurnal Pengembangan Energi Nuklir, 16(2), 143–155
Rybach, L. (1978). The relationship Between Seismic Velocity and Radioactive Heat Production in Continental Rocks. Pageoph, 117, 75–82.
Rybach, L., & Bunterbath, G. (1982). Relationship Between the Petrophysical Properties Density, Seismic Velocity, Heat Generation, and Mineralogical Constitution. Earth and Planetary Science Letters, 57, 335-367–376
Rybach, L., & Bunterbath, G. (1984). The Variation of Heat Generation, Density and Seismic Velocity with Rock Type in The Continental Lithosphere. Tectonophysics, 103, 335–344
Sclater, J. G., Jaupart, C., & Galson, D. (1980). The Heat Flow Through Oceanic and Continental Crust and the Heat Loss of the Earth. In Reviews of Geophysics (Vol. 18, Issue 1, pp. 269–311). https://doi.org/10.1029/RG018i001p00269
Setiawan, K., & Priadi, B. (2016). Characteristics of Trace Elements in Granitoid Magmatism Discrimination on Bangka Island. Eksplorium, 36(1), 1–16
Singh, L. S., & Vallinayagam, G. (2016). High Heat Producing Volcano-Plutonic Rocks of the Siner Area , Malani Igneous Suite , Western Rajasthan, India. International Journal of Geoscience, 2012(June), 1–5. https://doi.org/10.4236/ijg.2012.35
Siregar, R. N., & Kurniawan, W. B. (2018). 2D Interpretation of Subsurface Hot Spring Geothermal Structure in Nyelanding Village Through Schlumberger Geoelectricity Configuration Method. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 7(1), 81. https://doi.org/10.24042/jipfalbiruni.v7i1.2324
Sitha, K., & Setijadji, L. D. (2009). Characteristics of Granitic Rocks of Bangka Island, Indonesia, and Their Associated Mineralization [Universitas Gadjah Mada]. http://etd.repository.ugm.ac.id/home/detail_pencarian/43584
Slagstad, T. (2008). Radiogenic Heat Production of Archaean to Permian Geological Provinces in Norway. Norsk Geologisk Tidsskrift, 88(3), 149–166
Widana, K. S. (2013). Petrografi dan Geokimia Unsur Utama Granitoid Pulau Bangka: Kajian Awal Tektonomagmatisme. Eksplorium, 34(2), 1–16
Zhang, C., Hu, S., Zhang, S., Li, S., Zhang, L., Kong, Y., Zuo, Y., Song, R., Jiang, G., & Wang, Z. (2020). Radiogenic Heat Production Variations in the Gonghe Basin, Northeastern Tibetan Plateau: Implications for the Origin of High-Temperature Geothermal Resources. Renewable Energy, 148(November), 284–297. https://doi.org/10.1016/j.renene.2019.11.156