Analisa Produksi Panas Radiogenik, Densitas dan Kecepatan Seismik dari Singkapan Batu Granit Panas Bumi Nyelanding, Bangka Selatan

  • Rahmat Nawi Siregar Institut Teknologi Sumatera
  • Maria Evalina Purba Institut Teknologi Sumatera
  • Ahmat Munawir Siregar Universitas Jambi

Abstract

The purpose of this study was to determine the analysis of radiogenic heat production, density and seismic velocity of the outcrops of the South Bangka Nyelanding geothermal rock. The X-ray Fluorescence (XRF) method is applied to obtain heat-carrying radioactive elements in the form of Uranium, Thorium and Potassium and other oxides which are useful for studying seismic density and velocity. The main oxides used in this study were SiO2, TiO2, Al2O3, MgO, CaO, K2O and P2O5. The results showed that the density increased from the composition of the mineral felsic (acid) - mafic (base). Conclusion, as for the relationship with heat production, the SiO2 and P2O5 elements experienced a significant decrease compared to other oxides. As for seismic velocity, the results show that seismic velocity has a strong correlation with density.

Keywords: Radiogenic Heat Production, Seismic Velocity, Density, Oxides

References

Abbady, A. G. E., & Al-Ghamdi, A. H. (2018). Heat Production Rate from Radioactive Elements of Granite Rocks in North and Southeastern Arabian Shield Kingdom of Saudi Arabia. Journal of Radiation Research and Applied Sciences, 11(4), 281–290. https://doi.org/10.1016/j.jrras.2018.03.002

Ashwal, L. D., Morgan, P., Kelley, S. A., & Percival, J. A. (1987). Heat Production in an Archean Crustal Profile and Implications for Heat Flow and Mobilization of Heat-Producing Elements. Earth and Planetary Science Letters, 85(4), 439–450. https://doi.org/10.1016/0012-821X(87)90139-7

Aydin, A., Ferré, E. C., & Aslan, Z. (2007). The Magnetic Susceptibility of Granitic Rocks as a Proxy for Geochemical Composition : Example from the Saruhan Granitoids, Ne Turkey the Magnetic Susceptibility of Granitic Rocks as a Proxy for Geochemical Composition : Example from the Saruhan Granitoi. Tectonophysics, 44(May 2007), 85–95. https://doi.org/10.1016/j.tecto.2007.04.009

Baltaztis. E, J., & Mitropulos, E. (1992). The Main Granitic Intrusions of Greece : an Application of Trace Element Discrimination. Mineral Magazine, 56(December), 487–501

Behn, M., & Kelemen, P, B. (2003). Relationship Between Seismic P-Wave Velocity and the Composition of Anhydrous Igneous and Meta-Igneous Rocks. Geochemistry, Geophysics, Geosistems, 1041(4)

Brady, R. J., Ducea, M. N., Kidder, S. B., & Saleeby, J. B. (2006). The Distribution of Radiogenic Heat Production as a Function of Depth in the Sierra Nevada Batholith, California. Lithos, 86(3–4), 292–244. https://www.sciencedirect.com/science/article/pii/S0024493705001301

Brown, G. ., & Musset, A. . (1993). The Inaccessible Earth an integrated view to its (2nd ed.). Chapman & Hall Row

Chiozzi, P., Pasquale, V., Verdoya, M., & Furfaro, V. (2008). Hydrothermal Alteration Inferred from a Radiometric Survey on Lipari (Aeolian Islands, Italy). Environmental Semeiotics, 1(1), 70–82. https://doi.org/10.3383/es.1.1.5

Hasterok, D., & Webb, J. (2017). On the Radiogenic Heat Production of Igneous Rocks. Geoscience Frontiers, 8(5), 919–940. https://doi.org/10.1016/j.gsf.2017.03.006

He, Z. Y., Xu, X. S., & Niu, Y. (2010). Petrogenesis and Tectonic Significance of a Mesozoic Granite-Syenite-Gabbro Association from Inland South China. Lithos, 119(3–4), 621–641. https://doi.org/10.1016/j.lithos.2010.08.016

Lamas, R., Miranda, M., Neves, L., & Pereira, A. (2015). Radiogenic heat Production from a Deep Borehole in the Beiras Granite (Almeida, Central Portugal). Energy for Sustainability, June, 1–5

Ngadenin, N., Syafeul, H., Widana, K. S., Sukadana, I. G., & Indrastomo, F. D. (2014). Studi Potensi Thorium pada Batuan Granit di Pulau Bangka. Jurnal Pengembangan Energi Nuklir, 16(2), 143–155

Rybach, L. (1978). The relationship Between Seismic Velocity and Radioactive Heat Production in Continental Rocks. Pageoph, 117, 75–82.

Rybach, L., & Bunterbath, G. (1982). Relationship Between the Petrophysical Properties Density, Seismic Velocity, Heat Generation, and Mineralogical Constitution. Earth and Planetary Science Letters, 57, 335-367–376

Rybach, L., & Bunterbath, G. (1984). The Variation of Heat Generation, Density and Seismic Velocity with Rock Type in The Continental Lithosphere. Tectonophysics, 103, 335–344

Sclater, J. G., Jaupart, C., & Galson, D. (1980). The Heat Flow Through Oceanic and Continental Crust and the Heat Loss of the Earth. In Reviews of Geophysics (Vol. 18, Issue 1, pp. 269–311). https://doi.org/10.1029/RG018i001p00269

Setiawan, K., & Priadi, B. (2016). Characteristics of Trace Elements in Granitoid Magmatism Discrimination on Bangka Island. Eksplorium, 36(1), 1–16

Singh, L. S., & Vallinayagam, G. (2016). High Heat Producing Volcano-Plutonic Rocks of the Siner Area , Malani Igneous Suite , Western Rajasthan, India. International Journal of Geoscience, 2012(June), 1–5. https://doi.org/10.4236/ijg.2012.35

Siregar, R. N., & Kurniawan, W. B. (2018). 2D Interpretation of Subsurface Hot Spring Geothermal Structure in Nyelanding Village Through Schlumberger Geoelectricity Configuration Method. Jurnal Ilmiah Pendidikan Fisika Al-Biruni, 7(1), 81. https://doi.org/10.24042/jipfalbiruni.v7i1.2324

Sitha, K., & Setijadji, L. D. (2009). Characteristics of Granitic Rocks of Bangka Island, Indonesia, and Their Associated Mineralization [Universitas Gadjah Mada]. http://etd.repository.ugm.ac.id/home/detail_pencarian/43584

Slagstad, T. (2008). Radiogenic Heat Production of Archaean to Permian Geological Provinces in Norway. Norsk Geologisk Tidsskrift, 88(3), 149–166

Widana, K. S. (2013). Petrografi dan Geokimia Unsur Utama Granitoid Pulau Bangka: Kajian Awal Tektonomagmatisme. Eksplorium, 34(2), 1–16

Zhang, C., Hu, S., Zhang, S., Li, S., Zhang, L., Kong, Y., Zuo, Y., Song, R., Jiang, G., & Wang, Z. (2020). Radiogenic Heat Production Variations in the Gonghe Basin, Northeastern Tibetan Plateau: Implications for the Origin of High-Temperature Geothermal Resources. Renewable Energy, 148(November), 284–297. https://doi.org/10.1016/j.renene.2019.11.156
Published
2020-06-29
Abstract viewed = 94 times
pdf downloaded = 185 times