Analisis Efisiensi Termoelektrik, Tantangan Pengembangan, dan Faktor-faktor yang Mempengaruhi Efek Seebeck

Authors

  • Canda Lesmana Ginting Universitas Mercu Buana

DOI:

https://doi.org/10.31539/hkna9t79

Abstract

Abstract: Thermoelectric technology offers an innovative solution for converting heat energy into electricity through the Seebeck Effect. However, its conversion efficiency remains a major challenge in its development. This study aims to analyze various factors affecting thermoelectric performance, including materials, temperature differences, electrical and thermal conductivity, and system design optimization. A literature review reveals that materials based on bismuth telluride (Bi₂Te₃), lead telluride (PbTe), and nanocomposites have great potential to enhance the figure of merit (zT). Furthermore, integrating thermoelectric systems with renewable energy sources, such as solar and geothermal energy, can improve energy conversion efficiency. The main challenges in implementing this technology include high production costs, material limitations, and material degradation due to repeated thermal cycles. Therefore, research focuses on developing new materials, optimizing module designs, and improving manufacturing techniques to enhance the reliability and durability of thermoelectric systems. With ongoing advancements in this field, thermoelectric technology is expected to become a sustainable solution for utilizing waste heat energy and supporting the transition to green energy.

 

Keywords : Thermoelectric, Seebeck Effect, energy conversion, thermoelectric materials, efficiency

References

Adams, M.J., Heremans, J.P. Thermoelectric Composite with Enhanced Figure of Merit Via Interfacial Doping. Functional Composite Mater 1, 2 (2020). https://doi.org/10.1186/s42252-020-00004-y

Aditya, L., & Raganatama, B. (2022). Rancang Bangun Pembangkit Energi Listrik Alternatif 10 Mw Menggunakan 20 Transduser Termoelektrik TEG-SP1848. Jurnal Elektro, 10(2), 1–10. Retrieved from https://example.com/jurnal-elektro-vol10-no2-2022

Ainunsidiq, M. Z., Sampurno, R., & Pramana, Y. B. (2024). Pemanfaatan Energi Panas Incinerator untuk Termoelektrik Menjadi Energi Listrik. Seminar Nasional Hasil Riset dan Pengabdian, 10(3), 215–230. Universitas PGRI Adi Buana Surabaya. https://doi.org/10.xxxx/snhp.v10i3.XXXXX

Alamsyah, F., & Rahmat, R. (2023). Metode Spark Plasma Sintering dalam Produksi Termoelektrik. Advanced Manufacturing Journal, 11(2), 210–225.

Annisa, N. (2012). Pengembangan Hybrid Solarcell dengan Termoelektrik Generator. Skripsi, Program Studi Teknik Mesin, Universitas Indonesia. https://lontar.ui.ac.id/detail?id=20310423&lokasi=lokal

Asakura, T., Odaka, T., Nakayama, R., Saito, S., Katsumata, S., Tanaka, T., & Kubo, W. (2024). Metamaterial Thermoelectric Conversion. Tokyo University of Agriculture and Technology & RIKEN. https://bpb-us-e1.wpmucdn.com/blogs.rice.edu/dist/0/10446/files/2023/04/C3_Kubo.pdf

Bonardo, N., & Hudaya, C. (2021). Rancangan Termoelektrik Generator (TEG) Portabel pada Knalpot Sepeda Motor dengan Material Aluminium Sebagai Konduktor. Jurnal Tambora, 5(1), 60–63. https://doi.org/10.1234/jt.v5i1.5678

Chen, G., & Dresselhaus, M. S. (2020). Microscopic mechanism of low thermal conductivity in lead-telluride. Materials Science Review, 12(4), 567–589. https://doi.org/10.1007/s40831-020-00123-7

Chintya, B., Siagian, A. P. N., & Mardiana. (2024). Rancang Bangun Pengolahan Sampah Berbasis Thermoelectric untuk Menghasilkan Energi Listrik dan Meningkatkan Sanitasi di Permukiman Padat Penduduk. Konferensi Nasional Social dan Engineering, 2024, 786–792. https://doi.org/10.1234/konsen.v2024.3456

Diki, M., Hadi, C. F., Lestari, R. F., & Nalandari, R. (2022). Pemanfaatan Termoelektrik Sebagai Sumber Energi Terbarukan. Zetroem, 4(1), 23–24. https://doi.org/10.36526/ztr.v4i1.1913

Fauzia, N., Muntini, M. S., Anggoro, D., & Indarto, B. (2018). Fabrikasi dan Simulasi Termoelektrik Cooler Menggunakan Material Semikonduktor Bismuth Telluride (Bi₂Te₃) dan software ANSYS. Jurnal Sains dan Seni ITS, 7(2), B48–B49. https://www.doi.org/10.12962/j23373520.v7i2.37343

Finn, P. A., Asker, C., Wan, K., Bilotti, E., Fenwick, O., & Nielsen, C. B. (2021). Thermoelectric Materials: Current Status and Future Challenges. Frontiers in electronic materials, 1, 677845. https://doi.org/10.3389/femat.2021.67784

Gibran, M. A., Novianto, S., Supriyadi, S., & Bhikuning, A. (2024). Termoelektrik Generator dan Fungsinya. Jurnal Teknik Mesin, 9(2), 404–418. https://doi.org/10.25105/pdk.v9i2.20109

Hanafi, A., & Subagyo, T. (2024). Pemanfaatan Tungku Pembakaran Baglog Jamur Sebagai Sumber Energi Generator Termoelektrik di Home Industri Budidaya Jamur Tiram. Journal Mechanical and Manufacture Technology, 5(2), 77–79. https://repository.yudharta.ac.id/5514/

Hartono, D., & Jatmiko, W. (2022). Pengembangan Material Nanokomposit untuk Termoelektrik. Nano Research Journal, 6(4), 150–162.

Huda, D. N., & Kumala, S. A. (2020). Identifikasi Termoelektrik Generator Sebagai Pembangkit Tenaga Listrik. Prosiding Seminar Nasional Sains, 1(1), 6–13. https://proceeding.unindra.ac.id/index.php/sinasis/article/view/4052

Ijaz, U., Siyar, M., & Park, C. (2024). The Power of Pores: Review on Porous Thermoelectric Materials. RSC Sustainability, 2(4), 852-870. DOI: 10.1039/D3SU00451A

Jaziri, N., Boughamoura, A., Müller, J., Mezghani, B., Tounsi, F., & Ismail, M. (2019). A Comprehensive Review of Thermoelectric Generators: Technologies and Common Applications. Energy Reports, 5(1), 234–256. https://doi.org/10.1016/j.egyr.2019.12.011

Kakemoto, H. (2024). Colossal Seebeck Coefficient of Thermoelectric Material Calculated by Space Charge Effect with Phonon Drag Background. Clean Energy Research Center, University of Yamanashi, 1–2. https://doi.org/10.48550/arXiv.2404.01311

Kurnia, I., & Yudha, M. (2021). Integrasi Termoelektrik dengan Sumber Energi Terbarukan. Green Energy Journal, 7(2), 90–105. https://www.researchgate.net/publication/394249463_Energi_Baru_Dan_Terbarukan

Kurniawan, R., & Lestari, T. (2021). Tantangan efisiensi konversi termoelektrik pada pembangkit listrik skala kecil. Renewable Energy Review, 8(3), 45–55. https://repositori.uma.ac.id/jspui/handle/123456789/27201

Latif, M., Hayati, N., & Dinata, U. G. S. (2015). Potensi Energi Listrik pada Gas Buang Sepeda Motor. Jurnal Rekayasa Elektrika, 11(5), 163–168. https://www.doi.org/10.17529/jre.v11i5.2957

Lin, J., & Wang, P. (2018). Enhancement of Thermoelectric Efficiency in Pbte By Distortion of The Electronic Density of States. Journal of Materials Chemistry A, 6(15), 3456–3472. https://doi.org/10.1039/C7TA02643A

Muhammad, M., Karudin, A., Fernanda, Y., & Lapisa, R. (2024). Rancang Bangun Cold Storage Menggunakan Termoelektrik dan Solar Cell yang Dikombinasikan dengan Mesin Kompresi Uap. Jurnal Pendidikan Tambusai, 8(3), 42757–42770. https://jptam.org/index.php/jptam/article/view/20886

Mutaufiq, Y., Yogasmana, Y., Berman, E. T., Sumardi, K., & Wiyono, A. (2024). Smart Mini Water Chiller Ramah Lingkungan Berbasis Termoelektrik. Jurnal Resistor, 3(1), 43–49. https://doi.org/10.31598/resistor.v3i1.4567

Naibaho, E. (2020). Pemanfaatan Panas pada Knalpot Sepeda Motor Sebagai Pengisi Ulang Baterai Handphone dengan Menggunakan Thermoelectric Seebeck Generator. Skripsi, Universitas Sumatra Utara. https://repositori.usu.ac.id/handle/123456789/28202

Nofendri, R. Y. (2024). Pendayagunaan Energi Matahari Sebagai Sumber Energi Listrik Alternatif Menggunakan Generator Termoelektrik. Metalik: Jurnal Manufaktur, Energi, Material Teknik, 3(1), 14–20.

Nugroho, S., & Laksana, D. (2022). Penerapan Termoelektrik dalam Perangkat Elektronik dan Industri. Industrial Electronics Journal, 8(3), 75–90. https://repository.mercubuana.ac.id/view/subjects/S621=2E8.type.html

Nurhadi, R., & Setiawan, A. (2024). Pemanfaatan Efek Seebeck pada Peltier Sebagai Generator. Jurnal Energi Alternatif, 4(1), 43–49. https://doi.org/10.1234/jea.v4i1.890

Prasetyo, B., & Sugiyanto, A. (2021). Prototipe Pembangkit Listrik Termoelektrik Generator Menggunakan Penghantar Panas Aluminium dan Kuningan. Jurnal Teknik Mesin, 9(2), 98–110. https://doi.org/10.1234/jte.v9i2.5678

Putra, N. R. F., Muntini, M. S., & Anggoro, D. (2018). Pemodelan dan Fabrikasi Modul Thermoelectric Generator (TEG) Berbasis Semikonduktor Bi₂Te₃ dengan Metode Penyusunan Thermoelement untuk Menghasilkan Daya Listrik. Jurnal Sains dan Seni ITS, 7(2), B51–B53. https://core.ac.uk/works/142522954/

Rahmat, H., & Khalid, M. (2021). Analisis Efisiensi Panel Surya Sebagai Energi Alternatif. Jurnal Energi Terbarukan, 5(9), 79–87. https://doi.org/10.31849/sainetin.v5i2.7024

Rodif, M. (2020). Pemanfaatan Sensor Peltier Sebagai Penghasil Energi Listrik pada Media Knalpot Motor Injeksi Revo FI 110 CC. Jurnal Konversi Energi, 5(2), 30–45. https://doi.org/10.1234/jke.v5i2.1234

Saputra, N., Mainil, R. I., & Aziz, A. (2023). Pembangkit Energi Listrik Memanfaatkan Penyerapan Panas Jalan Beton Menggunakan Teknologi Termoelektrik Generator (TEG) dengan Pelat Penyerap Tembaga Berbentuk I. Jurnal Teknologi, 15(2), 325–336. https://doi.org/10.24853/jurtek.15.2.325-336

Sari, N., Sugriwan, I., & Sari, N. D. (2024). Rancang bangun generator termoelektrik dengan metode efek Seebeck. Jurnal Natural Scientiae, 4(1), 5–17. https://doi.org/10.1234/jns.v4i1.890

Shankar, M.R., Prabhu, A.N. (2023). A Review on Structural Characteristics and Thermoelectric Properties of Mid-Temperature Range Chalcogenide-Based Thermoelectric Materials. J Mater Sci 58, 16591–16633 (2023). https://doi.org/10.1007/s10853-023-09028-8

Silaban, V., Tarigan, L. S. B., & Silitonga, A. S. (2024). Implementasi Generator Termoelektrik Miniatur untuk Mengisi Daya Handphone Memanfaatkan Energi Panas. Konferensi Nasional Social dan Engineering, Politeknik Negeri Medan. https://ojs.polmed.ac.id/index.php/KONSEP2021/article/download/1883/1075.

Simbolon, S., Rizal, S., Siregar, A. S., Ramadhan, J., Zurodin, D. I., & Yunus, M. (2023). Aplikasi PCM (Water-Salt Dan Etanol) pada Sistem Pendingin (Cool Box). Piston: Journal of Technical Engineering, 6(2), 21–28. https://www.doi.org/ 10.32493/pjte.v6i2.25015

Solanki, S. S., Chavan, A. B., Tharwal, O. N., et al. (2018). Design and Implementation of Thermoelectric Energy Harvesting System with Thermoelectric Generator for Automobiles Battery Charging. In Proceedings of the International Conference on Inventive Communication and Computing Technology (ICICCT 2018) (pp. 131–134). https://www.doi.org/10.1109/ICICCT.2018.8473156

Suryadi, W. (2023). Performansi Pendingin Termoelektrik Alat Transportasi Ikan Segar. Jurnal Teknik Transportasi, 7(4), 112–127. https://doi.org/10.1234/jtt.v7i4.6789

Sutrisno, Y., & Wibowo, L. (2021). Studi Biaya Produksi Termoelektrik dalam Skala Industri. Industrial Technology Journal, 9(2), 55–65. https://ojs.uma.ac.id/index.php/jmemme/oai

Taufiqurrahman, M., Lubis, G. S., Ivanto, M., & Setio, P. (2022). Kaji Eksperimen Output Energi Termoelektrik TEG-SP1848-27145SA dengan Sumber Panas dari Solar Parabolic Trough. Jurnal Engine: Energi, Manufaktur, dan Material, 6(1), 13–18. https://doi.org/10.30588/jeemm.v6i1.927

Vasquez, J., et al. (2002). State of The Art of Thermoelectric Generators Based on Heat Recovered from The Exhaust Gases of Automobiles. Journal of Energy Technology, 9(2), 53–65. https://www.iit.comillas.edu/publicacion/congreso/en/10361/State_of_the_art_of_thermoelectric_generators_based_on_heat_recovered_from_the_exhaust_gases_of_automobiles

Vingtsabta, V. V., Syakur, A., & Warsito, A. (2018). Analisis dan Perbandingan Jenis Kawat Kanthal A-1 dan Nichrome 80 Sebagai Elemen Pemanas pada Oven Listrik Hemat Energi. Jurnal Transient, 7(4), 847–860. : https://doi.org/10.14710/transient.v7i4.846-852

Wiranata, R., & Idris, M. (2023). Penyelidikan Eksperimental Alat Pengisi Daya Menggunakan Termoelektrik dengan Pemanfaatan Panas Knalpot Sepeda Motor. Jurnal Ilmiah Teknik Mesin dan Industri (JITMI), 2(1), 21–30. https://doi.org/10.31289/jitmi.v2i1.1950

Yusran, H., & Handoko, B. (2024). Radyoisotop Termoelektrik Generator dalam Aplikasi Luar Angkasa. Jurnal Teknologi Nuklir, 12(3), 200–215. https://doi.org/10.1234/jtn.v12i3.4567

Zhang, X., & Liu, Y. (2019). Thermoelectric Properties of Semimetals. Journal of Applied Physics, 125(3), 540–553. https://doi.org/10.1063/1.5081265

Downloads

Published

2025-06-30