Perubahan Fıtokımıa Kecambah Kembang Kol (Brassica oleraceae L., var. botrytis) sebagai Respons terhadap Cahaya Biru

  • Mohamad Agus Salim Universitas Islam Negeri Sunan Gunung Djati

Abstract

The aim of this study was to observe the use of blue light on phytochemical changes during cauliflower (Brassica oleraceae L., var. botrytis) germination and the correlation between the parameters measured. The treatment was in the form of giving blue light and dark conditions as a control. Measurement of phytochemical compounds including ascorbic acid, glucosinolates, isothiocyanates and myrosinase enzymes was carried out every day for 5 days of germination. This research method is experimental research. Data obtained from measurements for all parameters are presented in the form of mean ± standard error. Furthermore, all data were analyzed using analysis of variance (ANOVA). To determine differences between groups, Duncan's multiple range test (DMRT) was used at the 95% confidence level. All data analysis used SPSS software version 24.0 (IBM, Chicago, IL, USA). In addition, the measurement of the correlation between parameters is carried out using the Pearson rank correlation coefficient. The results showed that blue light treatment significantly increased all measured phytochemical parameters. A significant positive correlation occurred between myrosinase activity and isothiocyanate formation. The glucosinolate content of cauliflower sprouts remained high during observations in the blue light treatment compared to the dark conditions. Blue light induces isothiocyanate formation and higher myrosinase activity when compared to dark conditions. The conclusion from this study is that blue light significantly increases the phytochemical changes of cauliflower sprouts.

 

Keywords: Ascorbic Acid, Glucosinolate, Isothiocyanate, Correlation, Myrosinase

References

Abdalla, M.A., Meschede, C.A.C. & Mühling, K. H. (2020). Selenium foliar application alters patterns of glucosinolate hydrolysis products of pak choi Brassica rapa L. var. chinensis. Scientia Horticulturae, 273, 109614. doi :10.1016/j.scienta. 2020.109614

Abellán, Á., Domínguez-Perles, R., Moreno, D.A. & García-Viguera, C. (2019). Sorting out the value of cruciferous sprouts as sources of bioactive compounds for nutrition and health. Nutrients, 11(2), 429. doi:10.3390/nu11020429

Aghajanzadeh, T., Hawkesford, M.J. & De Kok, L.J. (2014). The significance of glucosinolates for sulfur storage in Brassicaceae seedlings. Frontiers in Plant Science, 5, 704. doi : 10.3389/fpls.2014.00704

Almuhayawi, M.S., AbdElgawad, H., Al Jaouni, S.K., Selim, S. & Hassan, A.H.A. (2020). Elevated CO2 improves glucosinolate metabolism and stimulates anticancer and anti-inflammatory properties of broccoli sprouts. Food Chemistry, 328, 127102. doi:10.1016/j.foodchem.2020.127102

Artés-Hernández, F., Castillejo, N. & Martínez-Zamora, L. (2022). UV and visible spectrum led lighting as abiotic elicitors of bioactive compounds in sprouts, microgreens, and baby leaves—a comprehensive review including their mode of action. Foods, 11(3), 265. doi:10.3390/foods11030265

Beran, F., Sporer, T., Paetz, C., Ahn, S.J. & Betzin, F. (2018). One pathway is not enough: the cabbage stem flea beetle Psylliodes chrysocephala uses multiple strategies to overcome the glucosinolate-myrosinase defense in its host plants. Frontiers in Plant Science, 9, 1754. doi:10.3389/fpls.2018.01754

Castillejo, N., Martínez-Zamora, L., Gómez, P.A., Pennisi, G. & Crepaldi, A. (2021). Postharvest yellow LED lighting affects phenolics and glucosinolates biosynthesis in broccoli sprouts. Journal of Food Composition and Analysis, 103, 104101. doi:10.1016/j.jfca.2021.104101

Chen, W., Karangwa, E., Yu, J., Xia, S. & Feng, B. (2019). Effect of sodium chloride concentration on off-flavor removal correlated to glucosinolate degradation and red radish anthocyanin stability. Journal of Food Science and Technology, 56(2), 937–950. doi:10.1007/s13197-018-03559-8

Chowdhury, M., Kiraga, S., Islam, M.N., Ali, M. & Reza, M.N. (2021). Effects of temperature, relative humidity, and carbon dioxide concentration on growth and glucosinolate content of kale grown in a plant factory. Foods, 10(7), 1524. doi.org/10.3390/foods10071524

da Silva, D.L., de Mello, Prado, R., Tenesaca, L.F.L., da Silva, J.L.F. & Mattiuz, B.H. (2021). Silicon attenuates calcium deficiency by increasing ascorbic acid content, growth and quality of cabbage leaves. Scientific Reports, 11(1), 1–9. doi:10.1038/s41598-020-80934-6

di Bella, M.C., Niklas, A., Toscano, S., Picchi, V., & Romano, D. (2020). Morphometric characteristics, polyphenols and ascorbic acid variation in Brassica oleracea L. novel foods: Sprouts, microgreens and baby leaves. Agronomy, 10(6), 782. doi:10.3390/agronomy10060782

Fiutak, G. & Michalczyk, M. (2020). Effect of artificial light source on pigments, thiocyanates and ascorbic acid content in kale sprouts (Brassica oleracea L. var. Sabellica L.). Food Chemistry, 330, 127189. doi:10.1016/j.foodchem.2020.127189

Galádová, H., Polozsányi, Z., Breier, A. & Šimkovič, M. (2022). Sulphoraphane Affinity-Based Chromatography for the Purification of Myrosinase from Lepidium sativum Seeds. Biomolecules, 12(3), 406. doi:10.3390/biom12030406

Guijarro-Real, C., Hernández-Cánovas, L., Abellán-Victorio, Á., Ben-Romdhane, O. & Moreno, D.A. (2022). The Combination of Monochromatic LEDs and Elicitation with Stressors Enhances the Accumulation of Glucosinolates in Mustard Sprouts with Species-Dependency. Plants, 11(21), 2961. doi:10.3390/plants11212961

Idrees, N., Tabassum, B., Sarah, R. & Hussain, M.K. (2019). Natural compound from genus brassica and their therapeutic activities. In Natural bio-active compounds (pp. 477–491). Springer. doi:10.1007/978-981-13-7154-7_15

Kim, H.J., Chen, F., Wang, X., & Choi, J.H.( 2006). Effect of methyl jasmonate on phenolics, isothiocyanate, and metabolic enzymes in radish sprout (Raphanus sativus L.). Journal of Agricultural and Food Chemistry, 54(19), 7263–7269. doi:10.1021/jf060568c

Kyriakou, S., Trafalis, D.T., Deligiorgi, M.V., Franco, R. & Pappa, A. (2022). Assessment of Methodological Pipelines for the Determination of Isothiocyanates Derived from Natural Sources. Antioxidants, 11(4), 642. doi:10.3390/antiox11040642

Mastuo, T., Miyata, Y., Yuno, T., Mukae, Y. & Otsubo, A. (2020). Molecular mechanisms of the anti-cancer effects of isothiocyanates from cruciferous vegetables in bladder cancer. Molecules, 25(3), 575. https://doi.org/10.3390/molecules25030575

Men, X., Han, X., Lee, S.J., Oh, G. & Park, K.T. (2022). Anti-Obesogenic Effects of Sulforaphane-Rich Broccoli (Brassica oleracea var. italica) Sprouts and Myrosinase-Rich Mustard (Sinapis alba L.) Seeds In Vitro and In Vivo. Nutrients, 14(18), 3814. doi:10.3390/nu14183814

Mezzetti, B., Biondi, F., Balducci, F., Capocasa, F. & Mei, E. (2022). Variation of Nutritional Quality Depending on Harvested Plant Portion of Broccoli and Black Cabbage. Applied Sciences, 12(13), 6668. doi:10.3390/app12136668

Mitreiter, S. & Gigolashvili, T. (2021). Regulation of glucosinolate biosynthesis. Journal of Experimental Botany, 72(1), 70–91. doi:10.1093/jxb/eraa479

Mitsiogianni, M., Kyriakou, S., Anestopoulos, I., Trafalis, D.T. & Deligiorgi, M.V. (2021). An evaluation of the anti-carcinogenic response of major isothiocyanates in non-metastatic and metastatic melanoma cells. Antioxidants, 10(2), 284. doi:10.3390/antiox10020284

Noguchi, Y., Watanabe, R., Arai, A., Yamada, K. & Hasegawa, K. (2021). Synthesis and bioactivity of 4-methylthio-3-butenylisothiocyanate and raphanusanin, phototropism-regulating substances of radish hypocotyls. Tetrahedron Letters, 71, 153025. doi:10.1016/j.tetlet.2021.153025

Singh, S., Kumar, S., Singh, S.P., Yadav, S., Singh, A. & Awasthi, M.K. (2022). Plant spacing and cultivar on quality attributes in sprouting broccoli. South African Journal of Botany, 148, 737–741. doi:10.1016/j.sajb.2022.04.049

Teng, Z., Yu, Y., Zhu, Z., Hong, S.B. & Yang, B. (2021). Melatonin elevated Sclerotinia sclerotiorum resistance via modulation of ATP and glucosinolate biosynthesis in Brassica rapa ssp. pekinensis. Journal of Proteomics, 243, 104264. doi:10.1016/j.jprot.2021.104264

Tomasello, B., Di Mauro, M.D., Malfa, G.A., Acquaviva, R. & Sinatra, F.( 2020). Rapha Myr®, a blend of sulforaphane and myrosinase, exerts antitumor and anoikis-sensitizing effects on human astrocytoma cells modulating sirtuins and DNA methylation. International Journal of Molecular Sciences, 21(15), 5328. doi:10.3390/ijms21155328

Volden, J., Bengtsson, G.B. & Wicklund, T. (2009). Glucosinolates, L-ascorbic acid, total phenols, anthocyanins, antioxidant capacities and colour in cauliflower (Brassica oleracea L. ssp. botrytis); effects of long-term freezer storage. Food Chemistry, 112(4), 967–976. doi:10.1016/j.foodchem.2008.07.018

Wang, Z., Yang, R., Guo, L., Fang, M. & Zhou, Y. (2015). Effects of abscisic acid on glucosinolate content, isothiocyanate formation and myrosinase activity in cabbage sprouts. International Journal of Food Science & Technology, 50(8), 1839–1846. doi:10.1111/ijfs.12848

Wojdyło, A., Nowicka, P., Tkacz, K. & Turkiewicz, I.P. (2020). Sprouts vs. microgreens as novel functional foods: Variation of nutritional and phytochemical profiles and their in vitro bioactive properties. Molecules, 25(20), 4648. doi:10.3390/molecules 25204648

Wu, J., Cui, S., Liu, J., Tang, X. & Zhao, J. (2022). The recent advances of glucosinolates and their metabolites: Metabolism, physiological functions and potential application strategies. Critical Reviews in Food Science and Nutrition, 1–18. doi:10.1080/10408398.2022.2059441

Xie, C., Li, W., Gao, R., Yan, L. & Wang, P. (2022). Determination of glucosinolates in rapeseed meal and their degradation by myrosinase from rapeseed sprouts. Food Chemistry, 382, 132316. doi:10.1016/j.foodchem. 2022.132316

Xue, A., Liang, W., Wen, S., Gao, Y., Huang, X. (2021). Metabolomic analysis based on EESI-MS indicate blue LED light promotes aliphatic-glucosinolates biosynthesis in broccoli sprouts. Journal of Food Composition and Analysis, 97, 103777. doi:10.1016/j.jfca.2020.103777

Yang, L., Fanourakis, D., Tsaniklidis, G., Li, K. & Yang, Q. (2021). Contrary to red, blue monochromatic light improves the bioactive compound content in broccoli sprouts. Agronomy, 11(11), 2139. doi:10.3390/agronomy11112139

Zhuang, L., Huang, G., Li, X., Xiao, J. & Guo, L. (2022). Effect of different LED lights on aliphatic glucosinolates metabolism and biochemical characteristics in broccoli sprouts. Food Research International, 154, 111015. doi:10.1016/j.foodres. 2022.111015
Published
2023-06-30
Abstract viewed = 81 times
PDF downloaded = 140 times