Tingkat Keparahan Penyakit pada Daun Mangga (Mangifera indica) Menggunakan Software Imagej dan Plantix serta Kultur Bakteri pada Nutrient Agar (NA)

  • Imam Rosadi Universitas Mulawarman
  • Linda Oktavianingsih Universitas Mulawarman
  • Cici Lis Qurrotun Ayuni Universitas Mulawarman
  • Muhammadiyah Muhammadiyah Universitas Mulawarman
  • Adelia Putri Aulia Universitas Mulawarman
  • Desinta Amelia Putri Juhri Universitas Mulawarman
  • Iska Puspa Dewi Universitas Mulawarman
  • Sheny Soviana Universitas Mulawarman

Abstract

This study aims to determine the level of severity on mango (Mangifera indica) leaves. The methods used in this research are identifying disease symptoms using the Plantix application, measuring the severity of leaves using ImageJ software, and culturing bacterial cells on Nutrient Agar (NA). The sample uses 5 leaves and 3 different location points. The research results show that the data obtained from ImageJ software shows the level of severity with an average percentage, namely at location point A it is 1.98%, location point B is 1.18%, and location point C is 2.31%. Based on the results of bacterial cell culture, isolates were obtained with the characteristics, a) shape, namely round; b) the edge line, namely the whole; c) high, that is, convex; d) size, namely medium; e) color, namely colorless; f) texture, namely soft; g) appearance i.e. shiny. Based on the known disease symptoms on mango leaves, mango black bacterial spot disease was identified which was caused by the bacteria Xanthomonas citri pv. mangiferaeindicae. In conclusion, the data obtained from ImageJ software shows that the highest level of severity is at location point C and the lowest level of severity is at location point B.

 

Keywords: Leaves, ImageJ, Mango, Plantix, Xanthomonas

References

Agmalaro, M. A., Kustiyo, A., & Akbar, A. R. (2013). Identifikasi Tanaman Buah Tropika berdasarkan Tekstur Permukaan Daun Menggunakan Jaringan Syaraf Tiruan. Jurnal Ilmu Komputer dan Agri-Informatika, 2(2), 73-82. https://doi.org/10.29244/jika.2.2.73-82

Asri, A., Sakinah, A., & Mauboy, R. S. (2019). Penggunaan Media Tepung Limbah Ikan Cakalang untuk Pertumbuhan Bakteri Eschericia coli dan Staphycoccus aureus. Jurnal Biotropikal Sains, 16(3), 36-46. https://ejurnal.undana.ac.id/biotropikal/article/download/1726/1323

Effendi, M. T., Hidayat, N., & Dewi, R. K. (2019). Sistem Diagnosis Penyakit Tumbuhan Mangga Menggunakan Metode Naive Bayes. Jurnal Pengembangan Teknologi Informatika dan Ilmu Komputer, 3(4), 3896-3902. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/5072

Fatmariza, M. (2017). Tingkat Kepadatan Media Nutrient Agar Terhadap Pertumbuhan Bakteri Staphylococcus aureus. Jurnal Analis Medika Bio Sains, 4(2), 69-73. https://doi.org/10.32807/jambs.v4i2.88

Hafsan, H. (2014). Mikrobiologi Analitik. Makassar: Alauddin University Press

Hakim, I. L. (2020). Bakteri Patogen Tumbuhan. Banda Aceh: Syiah Kuala University Press

Herawati, A. (2017). Isolasi dan Karakterisasi Penyebab Penyakit Hawar Daun Bakteri (Xanthomonas oryzae pv. Oryzae l.) pada Tanaman Padi di Wilayah Sulawesi Selatan. Perbal: Jurnal Pertanian Berkelanjutan, 4(3), 1-14. http://dx.doi.org/10.30605/perbal.v4i3.591

Juariah, S., & Wulan, P. S. (2018). Pemanfaatan Limbah Cair Industri Tahu sebagai Media Alternatif Pertumbuhan Bacillus sp. Jurnal Analisis Kesehatan Klinik Sains, 6(1), 25-27. https://jurnal.univrab.ac.id/index.php/klinikal/article/view/527

Oktavianto, Y., Sunaryo, S., & Suryanto, A. (2015). Karakterisasi Tanaman Mangga (Mangifera indica L.) Cantek, Ireng, Empok, Jempol di Desa Tiron, Kecamatan Banyakan Kabupaten Kediri (Doctoral dissertation, Brawijaya University). Jurnal Produksi Tanaman, 3(2), 91-97. https://dx.doi.org/10.21176/protan.v3i2.174

Palgunadi, S., & Almandatya, Y. (2014). Klasifikasi Kualitas Kesehatan Daun Mangga Berdasarkan Warna Citra Daun. Prosiding SNST Fakultas Teknik, 1(1), 56-61. http://dx.doi.org/10.36499/psnst.v1i1.1026

Pradana, D. S., & Suprapto, B. R. (2017). Sistem Pakar Pendeteksi Hama dan Penyakit Tanaman Mangga menggunakan Metode Iterative Dichotomiser Tree (ID3). Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 2(7), 2713-2720. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/1677

Rosadi, I., Ayuni, C. L. Q., Nurcahyani, I., Butar-Butar, I. P. P., Muhammadiyah, M., & Oktavianingsih, L. (2022). Analisis Tingkat Keparahan Penyakit pada Daun Tanaman Pangan dengan Menggunakan Software ImageJ dan Plantix. Bioscientist: Jurnal Ilmiah Biologi, 10(1), 100-108. https://doi.org/10.33394/bioscientist.v10i1.4575

Rossita, A. S. (2017). Komparasi Media NA Pabrikan dengan NA Modifikasi untuk Media Pertumbuhan Bakteri Comparison of Medium NA Manufacturer with NA Modifications to The Growth Medium of The Bacteria. Jurnal Nasional Biologi, 1(1), 192-201.

Rueden, C. T., Schindelin, J., Hiner, M. C., DeZonia, B. E., Walter, A. E., Arena, E. T., & Eliceiri, K. W. (2017). ImageJ2: ImageJ for the Next Generation of Scientific Image Data. BMC Bioinformatics, 18(1), 1-26.

Solikin, S. (2020). Deteksi Penyakit pada Tanaman Mangga dengan Citra Digital: Tinjauan Literatur Sistematis (SLR). Bina Insani Ict Journal, 7(1), 63-72. https://doi.org/10.51211/biict.v7i1.1336

Tanzil, A. I., Sucipto, I., & Muhlison, W. (2022). Inventory of Pest and Disease in Mango Plants (Mangifera indica). Jurnal Pertanian Tropik, 9(2), 98-105. https://doi.org/10.32734/jpt.v9i2.8972
Published
2023-12-30
Abstract viewed = 111 times
pdf downloaded = 148 times