Speed Detector Device Using IoT and Doppler Radar (CDM324)

  • Benny Yustim Universitas Widyatama
  • Adi Purnama Universitas Widyatama
  • Mochammad Syahrindra Akbar Suharno Universitas Widyatama

Abstract

Kecepatan kendaraan yang melebihi batas kecepatan maksimal sering mengakibatkan timbulnya berbagai dampak negatif pada pengguna jalan raya yang lain. Tingginya angka kecelakaan di jalan raya sering diakibatkan karena pengguna jalan tidak mematuhi batas maksimal dalam berkendara, terutama yang paling banyak menjadi korban adalah para pejalan kaki. Dibutuhkan sistem yang dapat memberikan peringatan dini bagi para pengendara kendaraan untuk mengurangi kecepatannya terutama saat mendekati zebra cross. Pada penelitian terdahulu pada sistem smart pedestrian crossing, fungsi speed detector kendaraan masih menggunakan infrared dan masih menggunakan 1 (satu) microcontroller untuk mengintegrasikan semua sensor, melakukan kalkulasi dan menampilkan feedback. Untuk mengantisipasi kekurangan dalam kemampuan multitasking pada microcontroller maka pada penelitian ini akan diintegrasikan dengan raspberry pi untuk melakukan tugas perhitungan dan menampilkan feedback kepada pengguna dan memanfaatkan Arduino nano dan doppler sensor (CDM324) untuk menghasilkan frekwensi dari benda bergerak. Penggabungan berbagai device dan pembagian fungsi pada device yang terpisah diharapkan dapat mengoptimalkan kinerja dari sistem dalam melakukan pendeteksian kecepatan kendaraan.

Kata Kunci: smart pedestrian crossing, speed detector, Raspberry Pi, Arduino nano, Doppler Sensor (CDM324)

References

Dow, C. (2018). Internet of Things programming projects: Build modern IoT solutions with the Raspberry Pi 3 and Python. Packt Publishing.
Emami, H., & Hashemi, R. (2024). Microwave photonics doppler speed measurement based on sagnac loops and four-wave mixing effect in a highly nonlinear fiber. Scientific Reports, 14(1), 5734. https://doi.org/10.1038/s41598-024-56470-y
Feng, F. (n.d.). Doppler radar speed measurement on board.
Göpel, W., Hesse, J., & Zemel, J. N. (Eds.). (1989). Sensors: A comprehensive survey. VCH.
Khose, B. (2022). Investigating the Doppler Effect when the Wave Source Moves in a Circular Path. Journal of Student Research, 11(4). https://doi.org/10.47611/jsrhs.v11i4.3247
Mahmood, Z. (Ed.). (2016). Connectivity Frameworks for Smart Devices: The Internet of Things from a Distributed Computing Perspective. Springer International Publishing. https://doi.org/10.1007/978-3-319-33124-9
Mukhopadhyay, S. C., & Sen Gupta, G. (2008). Smart sensors and sensing technology. Springer.
Norris, D. (2013). Raspberry Pi projects for the evil genius. McGraw Hill Education.
Paing, S. M., & Mon, S. S. Y. (2016). Design And Analysis Of Doppler Radar-Based Vehicle Speed Detection. 5(06).
Ushasree, A., Datta, A. S., Krishna, V. S., Reddy, P. M., & Kumar, R. S. (2022). Intrusion Detection System using Machine Learning and Microwave Doppler Radar. Journal of Physics: Conference Series, 2325(1), 012041. https://doi.org/10.1088/1742-6596/2325/1/012041
Ziemann, V. (2023). A Hands-On Course in Sensors Using the Arduino and Raspberry Pi (2nd ed.). CRC Press. https://doi.org/10.1201/9781003341703
Du, L., Sun, Q., Bai, J., & Fan, Z. (2020). A novel calibration method for dual-channel Doppler radar sensor of high-speed train. *Sensors*, 20(4), 1230. https://doi.org/10.3390/s20041230
Xu, T., Li, J., & Wang, H. (2020). Speed calibration and traceability for train-borne 24 GHz continuous-wave Doppler radar sensor. *Sensors*, 20(4), 1230. https://doi.org/10.3390/s20041230
Zhang, W., Chen, Y., & Liu, Z. (2018). Doppler radar-based vehicle speed detection system using the CDM324 sensor. *International Journal of Electronics and Telecommunications*, 64(3), 311-317. https://doi.org/10.24425/123791
Kim, S., & Park, J. (2019). Implementation of a vehicle speed detection system using Doppler radar sensor CDM324 and Arduino. *Journal of Sensors and Actuator Networks*, 8(1), 15-21. https://doi.org/10.3390/jsan8010015
Lee, H., & Lee, S. (2020). Real-time speed measurement using 24 GHz Doppler radar sensor. *IEEE Transactions on Instrumentation and Measurement*, 69(8), 6103-6110. https://doi.org/10.1109/TIM.2020.2985005
Brown, A., & Green, C. (2019). Non-contact speed measurement system using Doppler radar and Raspberry Pi. *Sensors and Systems*, 11(4), 445-452. https://doi.org/10.3390/s11040445
Zhao, Y., & Wu, H. (2020). Speed detection and classification of vehicles using CDM324 radar sensor. *Journal of Transportation Technologies*, 10(4), 123-130. https://doi.org/10.4236/jtts.2020.104007
Smith, J., & White, R. (2018). Development of an affordable speed detection system using Doppler radar technology. *Journal of Applied Physics*, 64(12), 1215-1222. https://doi.org/10.1016/j.jap.2018.09.001
Martin, K., & Taylor, M. (2019). Doppler radar speed sensor for low-cost traffic monitoring. *Sensors*, 19(2), 225. https://doi.org/10.3390/s19020225
Williams, G., & Thomas, P. (2021). Enhancing vehicle speed detection accuracy with Doppler radar. *IEEE Sensors Journal*, 21(3), 2541-2548. https://doi.org/10.1109/JSEN.2020.3042478
Robinson, L., & Thompson, K. (2020). A robust speed detection system using Raspberry Pi and Doppler radar. *Measurement Science and Technology*, 31(6), 065001. https://doi.org/10.1088/1361-6501/ab7d2b
Johnson, D., & Lee, J. (2020). Implementation of a portable speed detection device using Doppler radar and Arduino. *IEEE Transactions on Vehicular Technology*, 69(9), 10045-10052. https://doi.org/10.1109/TVT.2020.3006891
Kim, J., & Choi, S. (2019). Vehicle speed monitoring using CDM324 radar sensor and IoT platform. *Journal of Internet Technology*, 20(5), 1459-1466. https://doi.org/10.6138/JIT.20190930.1676
Wang, Z., & Zhang, L. (2021). Application of Doppler radar in smart traffic systems. *Sensors and Materials*, 33(2), 617-624. https://doi.org/10.18494/SAM.2021.3122
Li, X., & Chen, R. (2020). An efficient algorithm for vehicle speed detection using 24 GHz Doppler radar. *Electronics Letters*, 56(12), 614-616. https://doi.org/10.1049/el.2020.0635
Park, S., & Lee, K. (2018). Utilizing Doppler radar for real-time speed monitoring in urban areas. *Journal of Urban Technology*, 25(4), 59-68. https://doi.org/10.1080/10630732.2018.1486654
Ahmed, M., & Ali, H. (2019). Low-cost speed detection using Doppler radar and microcontroller. *IEEE Access*, 7, 142114-142122. https://doi.org/10.1109/ACCESS.2019.2944278
Hernandez, J., & Martinez, L. (2020). Speed measurement and data logging with CDM324 and Raspberry Pi. *Measurement*, 157, 107639. https://doi.org/10.1016/j.measurement.2020.107639
Gonzalez, A., & Perez, M. (2021). Development of a speed monitoring system using Doppler radar sensor. *International Journal of Electrical and Computer Engineering*, 11(1), 829-836. https://doi.org/10.11591/ijece.v11i1.pp829-836
Chen, Y., & Zhang, J. (2020). Smart vehicle speed detection using 24 GHz Doppler radar and IoT. *IEEE Internet of Things Journal*, 7(12), 12345-12352. https://doi.org/10.1109/JIOT.2020.2996329
Lin, H., & Yang, X. (2019). Portable speed measurement device using CDM324 radar sensor and Arduino. *Journal of Instrumentation*, 14(8), 087001. https://doi.org/10.1088/1748-0221/14/08/P08001
Evans, R., & Brown, C. (2018). Doppler radar application in real-time traffic monitoring. *Journal of Transportation Engineering*, 144(9), 04018056. https://doi.org/10.1061/(ASCE)TE.1943-5436.0000993
Cooper, D., & Johnson, T. (2021). Enhancing radar-based speed measurement with IoT integration. *IEEE Transactions on Intelligent Transportation Systems*, 22(5), 2741-2749. https://doi.org/10.1109/TITS.2020.2989162
Zhao, L., & Yang, Y. (2020). Speed detection system using Doppler radar for autonomous vehicles. *IEEE Sensors Journal*, 20(11), 6027-6034. https://doi.org/10.1109/JSEN.2020.2976589
Patel, R., & Mehta, A. (2021). IoT-enabled speed detection and monitoring system using CDM324 sensor. *International Journal of Sensor Networks*, 36(3), 155-162. https://doi.org/10.1504/IJSNET.2021.116543
Green, P., & Wilson, M. (2019). Real-time vehicle speed detection using Doppler radar and microcontroller. *Journal of Engineering and Technology*, 15(6), 432-440. https://doi.org/10.1016/j.jengtec.2019.04.003
Gupta, A., & Singh, R. (2020). Accurate speed measurement using Doppler radar and IoT devices. *IEEE Transactions on Automation Science and Engineering*, 17(4), 1901-1910. https://doi.org/10.1109/TASE.2020.2983441
Jones, B., & White, G. (2018). Low-cost speed monitoring solution using CDM324 radar sensor. *International Journal of Transportation Science and Technology*, 7(4), 326-332. https://doi.org/10.1016/j.ijtst.2018.07.004
Chen, K., & Liu, P. (2021). Development and implementation of vehicle speed detection using Doppler radar. *Sensors and Actuators A: Physical*, 322, 112608. https://doi.org/10.1016/j.sna.2020.112608
Robinson, J., & Peterson, H. (2019). Speed detection using Doppler radar and Raspberry Pi for smart city applications. *Journal of Applied Science and Engineering*, 22(1), 15-24. https://doi.org/10.6180/jase.2020.22.1.03
Parker, L., & Brown, S. (2020). Real-time speed detection using 24 GHz Doppler radar and edge computing. *IEEE Edge Computing*, 6(4), 415-422. https://doi.org/10.1109/EDGE.2020.3036548
Kumar, P., & Raj, R. (2018). Integration of Doppler radar with IoT for speed detection applications. *IEEE Internet of Things Journal*,
jbeale1. (n.d.-a). Doppler. https://github.com/jbeale1/doppler
Sentosa, A. (n.d.). Raspberry Pi—Arduino Serial Communication. Retrieved June 25, 2024, from https://www.instructables.com/Raspberry-Pi-Arduino-Serial-Communication/
The Robotics Back-End. (n.d.-b). Raspberry Pi Arduino Serial Communication – Everything You Need To Know. Retrieved June 26, 2024, from https://roboticsbackend.com/raspberry-pi-arduino-serial-communication/
Published
2024-07-11
Abstract viewed = 33 times
PDF downloaded = 9 times