Klasifikasi Cryptocurrency Menggunakan Multi Channel Clustering
DOI:
https://doi.org/10.31539/judika.v8i3.15218Abstract
This study aims to (1) classify cryptocurrencies based on the integration of market data and on-chain data to provide a more accurate mapping of digital asset characteristics. The method used is Multi-Channel Clustering, which enables the combination of multiple data views (multi-view) in the clustering process. The data includes market capitalization, trading volume, percentage gain, and volatility from the market data channel, as well as coin supply and active addresses from the on-chain channel. All data were normalized using the Min-Max Normalization method to ensure scale uniformity across variables. The clustering process was carried out using a K-Means algorithm adapted for the multi-channel context. The results of the study identified three main clusters: Cluster 1 contains coins with medium to low market and on-chain activity characteristics such as Tron and Cro; Cluster 2 includes coins with high volume and significant on-chain activity but not dominant, such as Ethereum and Solana; and Cluster 3 consists solely of Bitcoin, which has a unique profile in both channels. In conclusion, the Multi-Channel Clustering method proves effective in producing a more comprehensive classification of cryptocurrencies and can serve as a decision-support tool in highly volatile and complex market environments.
Keywords: Cryptocurrancy, Classification, Multi-Channel Clustering.
References
Adyawan, N. W. (2024). Klasifikasi Kebendaan Aset Kripto serta Perolehan Hak Kebendaannya Berdasarkan KUHP Perdata. Aliansi: Jurnal Hukum, Pendidikan Dan Sosial Humaniora, 1(5), 158–172. https://doi.org/10.62383/aliansi.v1i5.394
Al Fajri, M. (2023). Penerapan K-Means Clustering dalam Memprediksi Mata Uang Cryptocurrency untuk Mengetahui Pergerakan Kenaikan, Penurunan, dan Sideways dalam Harga Bitcoin pada Blockchain Binance. Education Sains Technology Mathematic (EDUSTEM), 1(1), 146–159. https://e-journal.ivet.ac.id/index.php/EDUSTEM/article/view/2859.
Casella, B., & Paletto, L. (2023). Predicting Cryptocurrencies Market Phases through on-Chain Data Long-Term Forecasting. 2023 IEEE International Conference on Blockchain and Cryptocurrency, ICBC 2023, 1–4. https://doi.org/10.1109/ICBC56567.2023.10174989
Chen, M. S., Huang, L., Wang, C. D., Huang, D., & Lai, J. H. (2021). Relaxed Multi-View Clustering in Latent Embedding Space. Information Fusion, 68, 8–21. https://doi.org/10.1016/j.inffus.2020.10.013
Guntoro, & Sumanto, L. (2024). Urgensi Regulasi Cryptocurrency di Indonesia dalam Menghadapi Perkembangan Teknologi. Indonesian Journal of Law, 1(1), 162–169. https://jurnal.intekom.id/index.php/inlaw/article/view/495/420
Huda, N., Lake, Y., & Sitorus, D. R. H. (2023). Strategi Investasi pada Aset Cryptocurrency. Moneter - Jurnal Akuntansi Dan Keuangan, 10(1), 49–53. https://doi.org/10.31294/moneter.v10i1.14365
Kocabıyık, T., Karaatlı, M., Özsoy, M., & Özer, M. F. (2024). Cryptocurrency Portfolio Management: A Clustering-Based Association Approach. Ekonomika , 103(1), 25–43. https://doi.org/10.15388/Ekon.2024.103.1.2
Lorenzo, L., & Arroyo, J. (2022). Analysis of The Cryptocurrency Market Using Different Prototype-Based Clustering Techniques. Financial Innovation, 8(1). https://doi.org/10.1186/s40854-021-00310-9
Luxmana, D. B., & Oktafiyani, M. (2022). Analisis Fundamental Cryptocurrency T terhadap Fluktuasi Harga pada Masa Pandemi. Dinamika Akuntansi Keuangan Dan Perbankan, 11(1), 41–52. https://doi.org/10.35315/dakp.v11i1.8952
Reynaldo, J., Adikara, P. P., & Wihandika, R. C. (2020). Analisis Sentimen Mengenai Produk Toyota Avanza Menggunakan Metode Learning Vector Quantization Versi 3 (LVQ 3) dengan Seleksi Fitur Chi Square, Lexicon Teknologi Informasi, 4(3), 830–839. https://j-ptiik.ub.ac.id/index.php/j-ptiik/article/view/7066/3415
Rizky, R., Hakim, Z., Setiyowati, S., Susilawati, S., & Yunita, A. M. (2024). Development of the Multi-Channel Clustering Hierarchy Method for Increasing Performance in Wireless Sensor Network. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 23(3), 603–614. https://doi.org/10.30812/matrik.v23i3.3348
Sanjay, & Nabihasan. (2020). Blockchain Technology and its Application in Libraries. Library Herald, 58(4), 118–125. https://doi.org/10.5958/0976-2469.2020.00030.10
Setiyansah, A., & Sriyanto. (2023). Klasifikasi Harga Kriptokurensi (BitCoin) Menggunakan Metode K-Means. Jurnal Ilmiah KOMPUTASI, 22(4). https://doi.org/http://dx.doi.org/10.32409/jikstik.22.4.3409
Supriyanto, Siswoyo, & Rustyawati, D. (2021). Cryptocurrency: Sejarah dan Perkembangannya. JIB-Jurnal Perbankan Syariah, 01, 28–35. https://doi.org/10.51675/jib.v1i1.231
Yang, Y., & Wang, H. (2020). Multi-view clustering: A survey. Big Data Mining and Analytics, 1(2), 83–107. https://doi.org/10.26599/BDMA.2018.9020003
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Mario Syahputra, Fibri Rakhmawati

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.