Pengembangan Sistem Pengelompokan Belajar Mahasiswa pada Matakuliah Struktur Data dengan Metode K-Means

  • Yogi Yunefri Universitas Lancang Kuning
  • Eddisyah Putra Pane Universitas Lancang Kuning
  • Sutejo Sutejo Universitas Lancang Kuning

Abstract

The development of science and technology requires tertiary institutions as formal education institutions, to be able to produce qualified and competent graduates. Learning about higher education needs to be more innovative and creative in producing learning and responsive to labor needs. "Successful constraints of lecturers in teaching Data Structure subjects do not have learning models that approach students with abstract theories that are difficult for students to understand, to overcome these conflicts. learn with the Application of Cooperative Oriented Problems. However, in terms of grouping learning with the application of this method, it still takes a relatively long time to do individual testing several times to find a suitable group, so that the learning grouping is less than optimal. The method used in this study is K-Means Clustering, from the software that was built to help instructors in the subject of data structure in the process of grouping tutoring students. Grouping methods can be implemented to build valid student guidance grouping software.

Keywords: Learning Grouping System, Clustering, K-Means

References

Aditra, P. G. & Permana, J. A. (2017). Perancangan Sistem Pembagian Kelas Kuliah Mahasiswa dengan Kombinasi Metode K-Means dan K-Nearest Neighbors. E-Proceedings KNS&I STIKOM Bali, 285-290. Retrieved from https://knsi.stikom-bali.ac.id/index.php/eproceedings/article/view/54

Asroni, A., & Adrian, R. (2015). Penerapan Metode K-Means untuk Clustering Mahasiswa Berdasarkan Nilai Akademik Dengan Weka Interface Studi Kasus pada Jurusan Teknik Informatika UMM Magelang. Jurnal Ilmiah Semesta Teknika,18 (1), 76–82

Hamzah, M. L., Rukun, K., Fahmi, R., Purwati, A. A., Hamzah., & Zarnelly, Z. (2019). A Review of Increasing Teaching and Learning Database Subjects in Computer Science, Espacios, 40(26), 6. Retrieved from http://www.revistaespacios.com/a19v40n26/19402606.html

Li, L., Luo, X., & Chen, H. (2015). Clustering Students for Group-Based Learning in Foreign Language Learning. International Journal of Cognitive Informatics and Natural Intelligence, 9(2), 55-72

Poerwanto, B., & Fa’rifah, R. Y. (2016). Analisis Cluster Menggunakan Algoritma K-Means, d’ComPutarE. Jurnal Ilmiah Teknologi Informasi

Suprawoto, T. (2016). Klasifikasi Data Mahasiswa Menggunakan Metode K- Means untuk Menunjang Pemilihan Strategi Pemasaran, Jurnal Informatika dan Komputer (JIKO), 1(1), 12–18

Syafrianto, A. (2012). Perancangan Aplikasi K-means untuk Pengelompokan Mahasiswa Stmik El-Erhama Yogyakarta Berdasarkan Frekuensi Kunjungan ke Perpustakaan dan IPK. Jurnal Teknologi Informasi dan Ilmu Komputer (FAHMA), http://jurnal.stmikelrahma.ac.id/assets/file/Andri%20Syafrianto_stmikelrahma.pdf

Wardhani, A. (2016). K-Means Algorithm Implementation for Clustering of Patients Disease In Kajen Clinic of Pekalongan. Jurnal Transformatika, 14(1), 30-37.doi:http://dx.doi.org/10.26623/transformatika.v14i1.387

Yulia, D., & Setiawan, A. (2016). Penerapan Metode Clustering K-Means dalam Penjualan Produk. Jurnal Media Infotama, 12(2), 148–57
Published
2019-10-29
How to Cite
Yunefri, Y., Pane, E., & Sutejo, S. (2019). Pengembangan Sistem Pengelompokan Belajar Mahasiswa pada Matakuliah Struktur Data dengan Metode K-Means. INTECOMS: Journal of Information Technology and Computer Science, 2(2), 59-66. https://doi.org/https://doi.org/10.31539/intecoms.v2i2.812
Abstract viewed = 156 times
PDF downloaded = 119 times