DNA Mini Barcoding untuk Autentikasi Produk Perikanan

Authors

  • Fransisca Victory Kusumaningrum Universitas Kristen Duta Wacana
  • Laurentia Henrieta Permita Sari Purba Universitas Kristen Duta Wacana

DOI:

https://doi.org/10.31539/bioedusains.v8i2.14329

Abstract

Fisheries production is predicted to continuously increase every year. However, the development of fishery products may result in ingredient substitution where high- value components are replaced with the lower-economic alternatives. Additionally, mislabelling cases also occur when the claims on packaging do not accurately reflect the actual ingredients contained in the product. The use of DNA mini barcoding using the cytochrome c oxidase subunit I (COI) gene has emerged as an innovative solution in species identification, particularly in fishery products with degraded DNA. This technique utilizes short DNA fragments from marker regions ranging from 100-200 bp. By employing shorter marker size, the amplification and species identification process achieve a success rate of approximately 90-95%. DNA mini barcoding offers several advantages, including higher efficiency, speed, and accuracy in identification process, while also being cost-effective. However, this technique has certain limitations such as challenges in distinguishing genetically similar species and the dependence on the quality of the DNA sample. Despite these constrains, DNA mini barcoding serves an alternative for the authentication process of processed food products that contributing to food safety and conservation efforts.

 

Keywords: Authentication; Cytochrome C Oxidase Subunit I; Mini-barcodes DNA; Fish Product

References

Abdullah, A., Nurilmala, M., & Sitaresmi, K. P. (2019a). DNA Mini-Barcodes as A Molecular Marker for Various Hairtail Fish Products Traceability. Jurnal Pengolahan Hasil Perikanan Indonesia, 22(1), 33. https://doi.org/10.17844/jphpi.v22i1.25874

Abdullah, A., Nurilmala, M., & Sitaresmi, K. P. (2019b). DNA Mini-Barcodes as A Molecular Marker for Various Hairtail Fish Products Traceability. Jurnal Pengolahan Hasil Perikanan Indonesia, 22(1), 33. https://doi.org/10.17844/jphpi.v22i1.25874

Ardura, A., Planes, S., & Garcia-Vazquez, E. (2013). Applications of DNA barcoding to fish landings: Authentication and diversity assessment. ZooKeys, 365, 49–65. https://doi.org/10.3897/zookeys.365.6409

Armani, A., Guardone, L., Castigliego, L., D’Amico, P., Messina, A., Malandra, R., Gianfaldoni, D., & Guidi, A. (2015). DNA and Mini-DNA barcoding for the identification of Porgies species (family Sparidae) of commercial interest on the international market. Food Control, 50, 589–596. https://doi.org/10.1016/j.foodcont.2014.09.025

Cawthorn, D.-M., Duncan, J., Kastern, C., Francis, J., & Hoffman, L. C. (2015). Fish species substitution and misnaming in South Africa: An economic, safety and sustainability conundrum revisited. Food Chemistry, 185, 165–181. https://doi.org/10.1016/j.foodchem.2015.03.113

Chen, P.-Y., Ho, C.-W., Chen, A.-C., Huang, C.-Y., Liu, T.-Y., & Liang, K.-H. (2020). Investigating seafood substitution problems and consequences in Taiwan using molecular barcoding and deep microbiome profiling. Scientific Reports, 10(1), 21997. https://doi.org/10.1038/s41598-020-79070-y

Christiansen, H., Fournier, N., Hellemans, B., & Volckaert, F. A. M. (2018). Seafood substitution and mislabeling in Brussels’ restaurants and canteens. Food Control, 85, 66–75. https://doi.org/10.1016/j.foodcont.2017.09.005

Cline, E. (2012). Marketplace substitution of Atlantic salmon for Pacific salmon in Washington State detected by DNA barcoding. Food Research International, 45(1), 388–393. https://doi.org/10.1016/j.foodres.2011.10.043

Cundy, M. E., Santana-Garcon, J., McLennan, A. G., Ayad, M. E., Bayer, P. E., Cooper, M., Corrigan, S., Harrison, E., & Wilcox, C. (2023). Seafood label quality and mislabelling rates hamper consumer choices for sustainability in Australia. Scientific Reports, 13(1), 10146. https://doi.org/10.1038/s41598-023-37066-4

Daschner, A. (2016). Risks and Possible Health Effects of Raw Fish Intake. Fish and Fish Oil in Health and Disease Prevention. https://doi.org/10.1016/b978-0-12-802844-5.00031-2

Duggan, D. E., & Kochen, M. (2016). Small in scale but big in potential: Opportunities and challenges for fisheries certification of Indonesian small-scale tuna fisheries. Marine Policy, 67, 30–39. https://doi.org/10.1016/j.marpol.2016.01.008

FAO. (2022). The State of World Fisheries and Aquaculture 2022. FAO. https://doi.org/10.4060/cc0461en

FAO. (2024). In Brief to The State of World Fisheries and Aquaculture 2024. FAO. https://doi.org/10.4060/cd0690en

Fernandes, T. J. R., Amaral, J. S., & Mafra, I. (2021). DNA barcode markers applied to seafood authentication: An updated review. Critical Reviews in Food Science and Nutrition, 61(22), 3904–3935. https://doi.org/10.1080/10408398.2020.1811200

Filonzi, L., Vaghi, M., Ardenghi, A., Rontani, P. M., Voccia, A., & Nonnis Marzano, F. (2021a). Efficiency of DNA Mini-Barcoding to Assess Mislabeling in Commercial Fish Products in Italy: An Overview of the Last Decade. Foods, 10(7), 1449. https://doi.org/10.3390/foods10071449

Filonzi, L., Vaghi, M., Ardenghi, A., Rontani, P. M., Voccia, A., & Nonnis Marzano, F. (2021b). Efficiency of DNA Mini-Barcoding to Assess Mislabeling in Commercial Fish Products in Italy: An Overview of the Last Decade. Foods, 10(7), 1449. https://doi.org/10.3390/foods10071449

Gao, Z., Liu, Y., Wang, X., Wei, X., & Han, J. (2019). DNA Mini-Barcoding: A Derived Barcoding Method for Herbal Molecular Identification. Frontiers in Plant Science, 10, 987. https://doi.org/10.3389/fpls.2019.00987

Ghidini, S., Varrà, M. O., & Zanardi, E. (2019). Approaching authenticity issues in fish and seafood products by qualitative spectroscopy and chemometrics. Molecules, 24(9), 1812. https://doi.org/10.3390/molecules24091812

Hanner, R., Becker, S., Ivanova, N. V., & Steinke, D. (2011). FISH-BOL and seafood identification: Geographically dispersed case studies reveal systemic market substitution across Canada. Mitochondrial DNA, 22(sup1), 106–122. https://doi.org/10.3109/19401736.2011.588217

Hasnin, H. R., Muzaky, R., & Subakti, J. (2024). Analysis of fisheries market export in Indonesia.

Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences, 270(1512), 313–321. https://doi.org/10.1098/rspb.2002.2218

Hebert, P. D. N., & Gregory, T. R. (2005). The promise of DNA barcoding for taxonomy. Systematic Biology, 54(5), 852–859. https://doi.org/10.1080/10635150500354886

Jacquet, J. L., & Pauly, D. (2008). Trade secrets: Renaming and mislabeling of seafood. Marine Policy, 32(3), 309–318. https://doi.org/10.1016/j.marpol.2007.06.007

Janjua, S., Fakhar-I-Abbas, William, K., Malik, I. U., & Mehr, J. (2017). DNA mini-barcoding for wildlife trade control: A case study on identification of highly processed animal materials. Mitochondrial DNA Part A, 28(4), 544–546. https://doi.org/10.3109/24701394.2016.1155051

Kappel, K., & Schröder, U. (2016). Substitution of high-priced fish with low-priced species: Adulteration of common sole in German restaurants. Food Control, 59, 478–486. https://doi.org/10.1016/j.foodcont.2015.06.024

Khaksar, R., Carlson, T., Schaffner, D. W., Ghorashi, M., Best, D., Jandhyala, S., Traverso, J., & Amini, S. (2015). Unmasking seafood mislabeling in U.S. markets: DNA barcoding as a unique technology for food authentication and quality control. Food Control, 56, 71–76. https://doi.org/10.1016/j.foodcont.2015.03.007

Kolondam, B. J. (2020). Variasi sekuens gen COI untuk DNA barcoding ikan tuna. Media Teknologi Hasil Perikanan, 8(2), 70. https://doi.org/10.35800/mthp.8.2.2020.28378

Lv, J., Wu, S., Zhang, Y., Chen, Y., Feng, C., Yuan, X., Jia, G., Deng, J., Wang, C., Wang, Q., Mei, L., & Lin, X. (2014). Assessment of four DNA fragments (COI, 16S rDNA, ITS2, 12S rDNA) for species identification of the Ixodida (Acari: Ixodida). Parasites & Vectors, 7(1), 93. https://doi.org/10.1186/1756-3305-7-93

Meusnier, I., Singer, G. A., Landry, J.-F., Hickey, D. A., Hebert, P. D., & Hajibabaei, M. (2008). A universal DNA mini-barcode for biodiversity analysis. BMC Genomics, 9(1), 214. https://doi.org/10.1186/1471-2164-9-214

Mottola, A., Piredda, R., Catanese, G., Lorusso, L., Ciccarese, G., & Di Pinto, A. (2022). Species authentication of canned mackerel: Challenges in molecular identification and potential drivers of mislabelling. Food Control, 137, 108880. https://doi.org/10.1016/j.foodcont.2022.108880

Nagalakshmi, K., Annam, P.-K., Venkateshwarlu, G., Pathakota, G.-B., & Lakra, W. S. (2016). Mislabeling in Indian seafood: An investigation using DNA barcoding. Food Control, 59, 196–200. https://doi.org/10.1016/j.foodcont.2015.05.018

Obiero, K., Meulenbroek, P., Drexler, S., Dagne, A., Akoll, P., Odong, R., Kaunda-Arara, B., & Waidbacher, H. (2019). The contribution of fish to food and nutrition security in Eastern Africa: Emerging trends and future outlooks. Sustainability, 11(6), 1636. https://doi.org/10.3390/su11061636

PERATURAN MENTERI KELAUTAN DAN PERIKANAN REPUBLIK INDONESIA, Pub. L. No. NOMOR 67/PERMEN-KP/2018, 3 (2018).

Pierron, D., Wildman, D. E., Hüttemann, M., Letellier, T., & Grossman, L. I. (2012). Evolution of the couple cytochrome c and cytochrome c oxidase in primates. In B. Kadenbach (Ed.), Mitochondrial Oxidative Phosphorylation (Vol. 748, pp. 185–213). Springer New York. https://doi.org/10.1007/978-1-4614-3573-0_8

Pollack, S. J., Kawalek, M. D., Williams-Hill, D. M., & Hellberg, R. S. (2018). Evaluation of DNA barcoding methodologies for the identification of fish species in cooked products. Food Control, 84, 297–304. https://doi.org/10.1016/j.foodcont.2017.08.013

Rodríguez-Riveiro, R., Velasco, A., & Sotelo, C. G. (2022). The influence of DNA extraction methods on species identification results of seafood products. Foods, 11(12), 1739. https://doi.org/10.3390/foods11121739

Sarri, C., Stamatis, C., Sarafidou, T., Galara, I., Godosopoulos, V., Kolovos, M., Liakou, C., Tastsoglou, S., & Mamuris, Z. (2014). A new set of 16S rRNA universal primers for identification of animal species. Food Control, 43, 35–41. https://doi.org/10.1016/j.foodcont.2014.02.036

Shokralla, S., Hellberg, R. S., Handy, S. M., King, I., & Hajibabaei, M. (2015). A DNA mini-barcoding system for authentication of processed fish products. Scientific Reports, 5(1), 15894. https://doi.org/10.1038/srep15894

Tidd, A. N., Rousseau, Y., Ojea, E., Watson, R. A., & Blanchard, J. L. (2022). Food security challenged by declining efficiencies of artisanal fishing fleets: A global country-level analysis. Global Food Security, 32, 100598. https://doi.org/10.1016/j.gfs.2021.100598

Visciano, P., & Schirone, M. (2021). Food frauds: Global incidents and misleading situations. Trends in Food Science & Technology, 114, 424–442. https://doi.org/10.1016/j.tifs.2021.06.010

Zhang, X., Chen, J., Luo, H., Chen, X., Zhong, J., & Ji, X. (2024). Climate‐driven mitochondrial selection in lacertid lizards. Ecology and Evolution, 14(3), e11176. https://doi.org/10.1002/ece3.11176

Downloads

Published

2025-04-06