Sintesis dan Karakterisasi Nanokristal Selulosa Berbasis Biomassa Serat Sawit sebagai Material Isolasi Panas

Authors

  • Ina Ristian Poltekkes Genesis Medicare
  • Muhammad Rizki Kurniawan Politeknik Kesehatan Genesis Medicare
  • Renny Septiani Mokodongan Politeknik Kesehatan Genesis Medicare
  • Siti Nur Fauzia Politeknik Kesehatan Genesis Medicare

DOI:

https://doi.org/10.31539/76x1gw10

Abstract

This study aims to synthesize cellulose nanocrystals (CNC) from oil palm biomass and to characterize their properties. The method involved cellulose isolation through delignification using alkaline salts, followed by CNC synthesis via acid hydrolysis, and characterization using Scanning Electron Microscopy (SEM) and Particle Size Analyzer (PSA). The PSA analysis showed that CNC had an average diameter of 30 nm, with a small fraction ranging from 90 to 100 nm and another fraction reaching 10 nm. Morphological analysis by SEM revealed that CNC exhibited a rough surface. In conclusion, the obtained CNC has potential applications as a functional material in various fields, particularly in the automotive sector as a thermal insulation material.

Keywords: Biomass, Cellulose, Insulation, Nanocrystal, Oil Palm Fiber

 

 

References

Alothman, O. Y., Kian, L. K., Saba, N., Jawaid, M., & Khiari, R. (2021). Cellulose nanocrystal extracted from date palm fibre: Morphological, structural and thermal properties. Industrial Crops and Products, 159, 113075. https://doi.org/10.1016/j.indcrop.2020.113075

Babaei-Ghazvini, A., Vafakish, B., Patel, R., Falua, K. J., Dunlop, M. J., & Acharya, B. (2024). Cellulose nanocrystals in the development of biodegradable materials: A review on CNC resources, modification, and their hybridization. International Journal of Biological Macromolecules, 258, 128834. https://doi.org/10.1016/j.ijbiomac.2023.128834

Benzidane, M. A., Benzidane, R., Hamamousse, K., Adjal, Y., Sereir, Z., & Poilâne, C. (2022). Valorization of date palm wastes as sandwich panels using short rachis fibers in skin and petiole “wood” as core. Industrial Crops and Products, 177, 114436. https://doi.org/10.1016/j.indcrop.2021.114436

Chen, Z., Li, Z., Lan, P., Xu, H., & Lin, N. (2022). Hydrophobic and thermal-insulating aerogels based on rigid cellulose nanocrystal and elastic rubber. Carbohydrate Polymers, 275, 118708. https://doi.org/10.1016/j.carbpol.2021.118708

Ji, Q., Zhou, C., Li, Z., Boateng, I. D., & Liu, X. (2023). Is nanocellulose a good substitute for non-renewable raw materials? A comprehensive review of the state of the art, preparations, and industrial applications. Industrial Crops and Products, 202, 117093. https://doi.org/10.1016/j.indcrop.2023.117093

Le, W. T., Kankkunen, A., Rojas, O. J., & Yazdani, M. R. (2023). Leakage-free porous cellulose-based phase change cryogels for sound and thermal insulation. Solar Energy Materials and Solar Cells, 256, 112337. https://doi.org/10.1016/j.solmat.2023.112337

Ma, X., Chen, X., Yu, H. Y., Dong, Y., Jin, M., Chen, X., & Wang, X. (2024). Facile preparation of cellulose nanocrystal/alumina oxide composite flame retardant with corn-like structure, superhigh heat insulation, and synergistic smoke suppression ability. Industrial Crops and Products, 208, 117867. https://doi.org/10.1016/j.indcrop.2023.117867

Raza, M., Mustafa, J., Al-Marzouqi, A. H., & Abu-Jdayil, B. (2024). Isolation and characterization of cellulose from date palm waste using rejected brine solution. International Journal of Thermofluids, 21, 100548. https://doi.org/10.1016/j.ijft.2023.100548

Septevani, A. A., Evans, D. A. C., Annamalai, P. K., & Martin, D. J. (2017). The use of cellulose nanocrystals to enhance the thermal insulation properties and sustainability of rigid polyurethane foam. Industrial Crops and Products, 107, 114–121. https://doi.org/10.1016/j.indcrop.2017.05.039

Tiwari, A., & Sanjog, J. (2025). Morphological, structural, and thermal properties of cellulose nanocrystals extracted from Indian water chestnut shells (agricultural waste). Next Materials, 8, 100653. https://doi.org/10.1016/j.nxmate.2025.100653

Wang, H., Xia, B., Song, R., Huang, W., Zhang, M., Liu, C., Ke, Y., Yin, J. F., Chen, K., & Yin, P. (2023). Metal oxide cluster-assisted assembly of anisotropic cellulose nanocrystal aerogels for balanced mechanical and thermal insulation properties. Nanoscale, 15(11), 5469–5475. https://doi.org/10.1039/d2nr06551g

Wulandari, W. T., Rochliadi, A., & Arcana, I. M. (2016). Nanocellulose prepared by acid hydrolysis of isolated cellulose from sugarcane bagasse. IOP Conference Series: Materials Science and Engineering, 107(1), 012045. https://doi.org/10.1088/1757-899X/107/1/012045

Xing, L., Gu, J., Zhang, W., Tu, D., & Hu, C. (2018). Cellulose I and II nanocrystals produced by sulfuric acid hydrolysis of Tetra Pak cellulose I. Carbohydrate Polymers, 192, 184–192. https://doi.org/10.1016/j.carbpol.2018.03.042

Zheng, D., Zhang, Y., Guo, Y., & Yue, J. (2019). Isolation and characterization of nanocellulose with a novel shape from walnut (Juglans regia L.) shell agricultural waste. Polymers, 11(7), 1130. https://doi.org/10.3390/polym11071130

Downloads

Published

2025-10-27