Pemanfaatan Hidrolisat Talas (Colocasia esculenta L.) pada Kultur Miksotrofik Mikroalga Tetraselmis chui: Pengamatan Pertumbuhan dan Kadar Lipida
Abstract
This study aims to observe the potential use of taro hydrolysate (Colocasia esculenta L.) as a source of complex organic carbon to produce optimum cell density, biomass, lipid and chlorophyll content from T. chui microalgae under myxotrophic conditions. The culture was carried out in a vial containing 400 mL of bold basal medium. Taro hydrolysate is given in five concentrations, namely: 0, 5, 10, 15 and 20 g/L. The results showed that T. chui microalgae could grow in myxotrophic conditions with the addition of taro hydrolysate in the concentration range of 5 to 20 g/L. The maximum cell density and dry weight in the addition of 10 g/L taro hydrolysate were 4.23 x 105 cells/ml and 0.57 g/L, respectively. Meanwhile, the maximum fresh weight and lipid content were achieved at the addition of 15 g/L taro hydrolysate, namely 4.85 g/L and 67.4%. Chlorophyll content decreased with increasing concentration of taro hydrolysate. In conclusion, the use of taro hydrolysate can increase cell density, fresh weight and dry weight, lipid content and decrease the chlorophyll content of T.chui microalgae in myxotrophic culture.
Keywords: Taro Hydrolysate, Lipid, Mixotrophic, Growth, Tetraselmis chui
References
Ayed, H. B. A. B., Taidi, B., Ayadi, H., Pareau, D., & Stambouli, M. (2017). The Use of Chlorella vulgaris to Accumulate Magnesium Under Different Culture Conditions. Journal of Applied Biotechnology & Bioengineering, 2(5), 180-185. https://doi.org/10.15406/jabb.2017.02.00043
Aziz, M. M. A., Kassim, K. A., Shokravi, Z., Jakarni, F. M., Liu, H. Y., Zaini, N., & Shokravi, H. (2020). Two-Stage Cultivation Strategy for Simultaneous Increases in Growth Rate and Lipid Content of Microalgae: A Review. Renewable and Sustainable Energy Reviews, 119, 1-15. https://doi.org/10.1016/j.rser.2019.109621
Baldisserotto, C., Sabia, A., Guerrini, A., Demaria, S., Maglie, M., Ferroni, L., & Pancaldi, S. (2021). Mixotrophic Cultivation of Thalassiosira pseudonana with Pure and Crude Glycerol: Impact on Lipid Profile. Algal Research, 54(9). https://doi.org/10.1016/j.algal.2021.102194
Cai, Y., Liu, Y., Liu, T., Gao, K., Zhang, Q., Cao, L & Ruan, R. (2021). Heterotrophic Cultivation of Chlorella vulgaris Using Broken Rice Hydrolysate as Carbon Source for Biomass and Pigment Production. Bioresource Technology, 323. https://doi.org/10.1016/j.biortech.2020.124607
Chandra, R., Rohit, M. V., Swamy, Y. V., & Mohan, S. V. (2014). Regulatory Function of Organic Carbon Supplementation on Biodiesel Production during Growth and Nutrient Stress Phases of Mixotrophic Microalgae Cultivation. Bioresource Technology, 165, 279-287. https://doi.org/10.1016/j.biortech.2014.02.102
Choix, F. J., Ramos-Ibarra, J. R., Mondragón-Cortez, P., Lara-González, M. A., Juárez-Carrillo, E., Becerril-Espinosa, A., & Torres, J. R. (2021). Mixotrophic Growth Regime as a Strategy to Develop Microalgal Bioprocess from Nutrimental Composition of Tequila vinasses. Bioprocess and Biosystems Engineering, 1-12. https://doi.org/10.1007/s00449-021-02512
Daliry S., Hallajisani, A., Roshandeh J. M., Nouri, H., & Golzary, A. (2017). Investigation of Optimal Condition for Tetraselmis chui Microalgae Growth. Global J. Environ. Sci. Manage., 3(2), 217-230. https://doi.org/10.22034/gjesm.2017.03.02.010
Fuentes-Grünewald, C., Gayo-Peláez, J. I., Ndovela, V., Wood, E., Kapoore, R. V., & Llewellyn, C. A. (2021). Towards a Circular Economy: A Novel Microalgal Two-Step Growth Approach to Treat Excess Nutrients from Digestate and to Produce Biomass for Animal Feed. Bioresource Technology, 320. https://doi.org/10.1016/j.biortech.2020.124349
Huang, Y., Lou, C., Luo, L., & Wang, X. C. (2021). Insight into Nitrogen and Phosphorus Coupling Effects on Mixotrophic Chlorella vulgaris Growth Under Stably Controlled Nutrient Conditions. Science of the Total Environment, 752, 1-10. https://doi.org/10.1016/j.scitotenv.2020.141747
Jeong, H. J., Kang, H. C., Lim, A. S., Jang, S. H., Lee, K., Lee, S. Y., & Kim, K. Y. (2021). Feeding Diverse Prey as an Excellent Strategy of Mixotrophic Dinoflagellates for Global Dominance. Science Advances, 7(2). https://doi.org/10.1126/sciadv.abe4214
Kallarakkal, K. P., Muthukumar, K., Alagarsamy, A., Pugazhendhi, A., & Mohamed, S. N. (2021). Enhancement of Biobutanol Production Using Mixotrophic Culture of Oscillatoria sp. in Cheese Whey Water. Fuel, 284, 1-9. https://doi.org/10.1016/j.fuel.2020.119008
Lee, S. A., Lee, N., Oh, H. M., & Ahn, C. Y. (2021). Stepwise Treatment of Undiluted Raw Piggery Wastewater, Using Three Microalgal Species Adapted to High Ammonia. Chemosphere, 263, 1-11. https://doi.org/10.1016/j.chemosphere.2020.127934
Lie, A. A., Liu, Z., Terrado, R., Tatters, A. O., Heidelberg, K. B., & Caron, D. A. (2017). Effect of Light and Prey Availability on Gene Expression of the Mixotrophic Chrysophyte, Ochromonas sp. BMC Genomics, 18(1), 1-16. https://doi.org/10.1186/s12864-017-3549-1
Ma, X., Zhang, M., Gao, Z., Gao, M., Wu, C., & Wang, Q. (2021). Microbial Lipid Production from Banana Straw Hydrolysate and Ethanol Stillage. Environmental Science and Pollution Research, 1-12. https://doi.org/10.1007/s11356-021-12644-z
Marudhupandi, T., Sathishkumar, R., & Kumar, T. T. A. (2016). Heterotrophic cultivation of Nannochloropsis salina for Enhancing Biomass and Lipid Production. Biotechnology Reports, 10, 8-16. https://doi.org/10.1016/j.btre.2016.02.001
Mohan, S. V., & Devi, M. P. (2014). Salinity Stress Induced Lipid Synthesis to Harness Biodiesel During Dual Mode Cultivation of Mixotrophic Microalgae. Bioresource Technology, 165, 288-294. https://doi.org/10.1016/j.biortech.2014.02.103
Nguyen, M. K., Kim, M. K., Moon, J. Y., Van Tran, V., & Lee, Y. C. (2021). Influence of Chitosan-Based Carbon Dots Added in Mgac-Containing Culture Medium on Green Alga Tetraselmis sp. Journal of Applied Phycology, 1-11. https://doi.org/10.1007/s10811-021-02368-5
Oliveira, C. Y. B., D'Alessandro, E. B., Antoniosi Filho, N. R., Lopes, R. G., & Derner, R. B. (2021). Synergistic Effect of Growth Conditions and Organic Carbon Sources for Improving Biomass Production and Biodiesel Quality by The Microalga Choricystis minor var. minor. Science of the Total Environment, 759. https://doi.org/10.1016/j.scitotenv.2020.143476
Piasecka, A., Nawrocka, A., Wiącek, D., & Krzemińska, I. (2020). Agro-Industrial by-Product in Photoheterotrophic and Mixotrophic Culture of Tetradesmus obliquus: Production of ω3 and ω6 Essential Fatty Acids with Biotechnological Importance. Scientific Reports, 10(1), 1-11. https://doi.org/10.1038/s41598-020-63184-4
Roostaei, J., Zhang, Y., Gopalakrishnan, K., & Ochocki, A. J. (2018). Mixotrophic Microalgae Biofilm: A Novel Algae Cultivation Strategy for Improved Productivity and Cost-Efficiency of Biofuel Feedstock Production. Scientific Reports, 8(1), 1-10. https://doi.org/10.1038/s41598-018-31016-1
Rupaedah, B., & Takahashi, Y. (2017). Effect of Nitrogen Supply in Culture Media and Light Intensity on Photosynthesis of Chlamydomonas reinhardtii. Jurnal Bioteknologi & Biosains Indonesia (JBBI), 4(2), 64-69. https://doi.org/10.29122/jbbi.v4i2.15
Show, P. L., Tang, M. S., Nagarajan, D., Ling, T. C., Ooi, C. W., & Chang, J. S. (2017). A Holistic Approach to Managing Microalgae for Biofuel Applications. International Journal of Molecular Sciences, 18(1), 215. https://doi.org/10.3390/ijms18010215
Smith, J. P., Hughes, A. D., McEvoy, L., Thornton, B., & Day, J. G. (2021). The Carbon Partitioning of Glucose and DIC in Mixotrophic, Heterotrophic and Photoautotrophic Cultures of Tetraselmis suecica. Biotechnology Letters, 43(3), 729-743. https://doi.org/10.1007/s10529-020-03073-y
Subhash, G. V., Rohit, M. V., Devi, M. P., Swamy, Y. V., & Mohan, S. V. (2014). Temperature Induced Stress Influence on Biodiesel Productivity During Mixotrophic Microalgae Cultivation with Wastewater. Bioresource Technology, 169, 789-793. https://doi.org/10.1016/j.biortech.2014.07.019
Zhang, Z., Sun, D., Cheng, K. W., & Chen, F. (2021). Investigation of Carbon and Energy Metabolic Mechanism of Mixotrophy in Chromochloris zofingiensis. Biotechnology for Biofuels, 14(1), 1-16. https://doi.org/10.1186/s13068-021-01890-5