Virus Bakteri sebagai Terapi untuk Penyakit Infeksi

  • Rina Hidayati Pratiwi Universitas Indraprasta PGRI

Abstract

This study aims to provide information related to the role of phages or bacterial viruses in treating infectious diseases. The method used is a secondary literature study from several research publications. The results showed that phage therapy had been medically proven to be superior to antibiotic treatment. Phage families Myoviridae and Podoviridae are the best candidates for phage therapy because most of them have a lytic cycle. Phages with lytic phage types tend to be widely used as biocontrol agents because they are specific and lyse target cells (pathogenic bacteria). In addition, phages do not have genetic material that can be integrated into the human body, so therapy using phages is not virulent in humans. Treatment using phages also does not cause phage resistance to antibiotics. In conclusion, phages' advantages, effectiveness, and host specificity make phages used in various applications to treat infectious diseases.

Keywords: Bacteriophage, Phage, Lytic, Therapy, Virus

References

Acharya, K. P., Subramanya, S. H., & Lopes, B. S. (2019). Combatting Antimicrobial Resistance in Nepal: The Need for Precision Surveillance Programmes and Multi-sectoral Partnership. JAC-Antimicrobial Resistance, 1(3), 2–3. https://doi.org/10.1093/jacamr/dlz066

Altamirano, F. L. G., & Barr, J. J. (2019). Phage Therapy in the Postantibiotic Era. Clinical Microbiology Reviews, 32(2), 1–25. https://doi.org/10.1128/CMR.00066-18

Azam, A. H., & Tanji, Y. (2019). Peculiarities of Staphylococcus aureus Phages and Their Possible Application in Phage Therapy. Applied Microbiology and Biotechnology, 103(11), 4279-4289. https://doi.org/10.1007/s00253-019-09810-2

Broncano-Lavado, A., Santamaría-Corral, G., Esteban, J., & García-Quintanilla, M. (2021). Advances in Bacteriophage Therapy Against Relevant Multidrug-resistant Pathogens. Antibiotics, 10(6), 1-23. https://doi.org/10.3390/antibiotics10060672

Chen, J., Quiles-Puchalt, N., Chiang, Y. N., Bacigalupe, R., Fillol-Salom, A., Chee, M. S. J., Fitzgerald, J. R., & Penadés, J. R. (2018). Genome Hypermobility by Lateral Transduction. Science, 362(6411), 207–212. https://doi.org/10.1126/science.aat5867

Choliq, F. A., Martosudiro, M., Istiqomah, I., & Nijami, M. F. (2020). Isolasi dan Uji Kemampuan Bakteriofag sebagai Agens Pengendali Penyakit Layu Bakteri (Ralstonia solanacearum) pada Tanaman Tomat. VIABEL: Jurnal Ilmiah Ilmu-Ilmu Pertanian, 14(1), 8–20. https://doi.org/10.35457/viabel.v14i1.996

Dao, T. L., Hoang, V. T., Ly, T. D. A., Magmoun, A., Canard, N., Drali, T., Fenollar, F., Ninove, L., Raoult, D., Parola, P., Courjon, J., & Gautret, P. (2020). Infectious Disease Symptoms and Microbial Carriage Among French Medical Students Travelling Abroad: A Prospective Study. Travel Medicine and Infectious Disease, 34, 101-548. https://doi.org/10.1016/j.tmaid.2019.101548

Deshanda, R. P., Lingga, R., Hidayati, N. A., Sari, E., & Hertati, R. (2019). Fag Salmonella Asal Limbah Pasar Ikan dan Air Sungai di Sekitar Kampus Universitas Bangka Belitung. EKOTONIA: Jurnal Penelitian Biologi, Botani, Zoologi dan Mikrobiologi, 3(2), 45–49. https://doi.org/10.33019/ekotonia.v3i2.758

Ganeshan, S. D., & Hosseinidoust, Z. (2019). Phage Therapy with a Focus on the Human Microbiota. Antibiotics, 8(3), 1-19. https://doi.org/10.3390/antibiotics8030131

Geng, H., Zou, W., Zhang, M., Xu, L., Liu, F., Li, X., Wang, L., & Xu, Y. (2020). Evaluation of Phage Therapy in the Treatment of Staphylococcus aureus-Induced Mastitis in Mice. Folia Microbiologica, 65(2), 339-351. https://doi.org/10.1007/s12223-019-00729-9

Górski, A., Borysowski, J., & Międzybrodzki, R. (2020). Phage Therapy: Towards a Successful Clinical Trial. Antibiotics, 9(11), 1-7. https://doi.org/10.3390/antibiotics9110827

Hardanti, S., Wardani, A. K., & Rukmi, W. D. (2018). Isolasi dan Karakterisasi Bakteriofag Spesifik Salmonella typhi dari Kulit Ayam. Jurnal Teknologi Pertanian, 19(2), 107–116. https://doi.org/10.21776/ub.jtp.2018.019.02.5

Hyman, P. (2019). Phages for Phage Therapy: Isolation, Characterization, and Host Range Breadth. Pharmaceuticals, 12(1), 1-23. https://doi.org/10.3390/ph12010035

Kaur, S., & Chhibber, S. (2021). A Mouse Air Pouch Model for Evaluating the Anti-bacterial Efficacy of Phage MR-5 in Resolving Skin and Soft Tissue Infection Induced by Methicillin-resistant Staphylococcus aureus. Folia Microbiologica, 2021, 1-20. https://doi.org/10.1007/s12223-021-00895-9

Malik, D. J., Sokolov, I. J., Vinner, G. K., Mancuso, F., Cinquerrui, S., Vladisavljevic, G. T., Clokie, M. R. J., Garton, N. J., Stapley, A. G. F., & Kirpichnikova, A. (2017). Formulation, Stabilisation and Encapsulation of Bacteriophage for Phage Therapy. Advances in Colloid and Interface Science, 249, 100-133. https://doi.org/10.1016/j.cis.2017.05.014

Monteiro, R., Pires, D. P., Costa, A. R., & Azeredo, J. (2019). Phage Therapy: Going Temperate? Trends in Microbiology, 27(4), 368-378. https://doi.org/10.1016/j.tim.2018.10.008

Nilsson, A. S. (2019). Pharmacological Limitations of Phage Therapy. Upsala Journal of Medical Sciences, 124(4), 218-227. https://doi.org/10.1080/03009734.2019.1688433

Pirnay, J. P. (2020). Phage Therapy in the Year 2035. Frontiers in Microbiology, 11(1171), 1-8. https://doi.org/10.3389/fmicb.2020.01171

Qadir, M. I., Mobeen, T., & Masood, A. (2018). Phage Therapy: Progress in Pharmacokinetics. Brazilian Journal of Pharmaceutical Sciences, 54(1), 1-9. https://doi.org/10.1590/s2175-97902018000117093

Rijal, K. R., Banjara, M. R., Dhungel, B., Kafle, S., Gautam, K., Ghimire, B., Ghimire, P., Dhungel, S., Adhikari, N., Shrestha, U. T., Sunuwar, D. R., Adhikari, B., & Ghimire, P. (2021). Use of Antimicrobials and Antimicrobial Resistance in Nepal: A Nationwide Survey. Scientific Reports, 11(1), 1–14. https://doi.org/10.1038/s41598-021-90812-4

Sabino, J., Hirten, R. P., & Colombel, J. F. (2020). Review Article: Bacteriophages in Gastroenterology—from Biology to Clinical Applications. Alimentary Pharmacology and Therapeutics, 51(1), 53-63. https://doi.org/10.1111/apt.15557

Shrestha, S. K., Shah, N. P., Jha, K. K., Pant, R. P., Joshi, L. R., Bichha, R. P., & Karki, K. B. (2018). Challenges in the Diagnosis of Drug-resistant Tuberculosis by GeneXpert MTB/Rif in Nepal. SAARC Journal of Tuberculosis, Lung Diseases and HIV/AIDS, 16(2), 8–15. https://doi.org/10.3126/saarctb.v16i2.23337

Tomat, D., Casabonne, C., Aquili, V., Balagué, C., & Quiberoni, A. (2018). Evaluation of A Novel Cocktail of Six Lytic Bacteriophages Against Shiga Toxin-producing Escherichia coli in Broth, Milk and Meat. Food Microbiology, 76, 434–442. https://doi.org/10.1016/j.fm.2018.07.006

Triana, E. (2018). Aktivitas Antibiofilm Bakteri Escherichia coli oleh Bakteriofag Secara In Vitro. Berita Biologi, 17(1), 77-84. https://doi.org/10.14203/beritabiologi.v17i1.3234

World Health Organization. (2018). Antimicrobial Resistance and Primary Health Care. https://www.who.int/docs/default-source/primary-health-care-conference/amr.pdf?sfvrsn=8817d5ba_2

Yu, L., Wang, S., Guo, Z., Liu, H., Sun, D., Yan, G., Hu, D., Du, C., Feng, X., Han, W., Gu, J., Sun, C., & Lei, L. (2018). A Guard-killer Phage Cocktail Effectively Lyses the Host and Inhibits the Development of Phage-resistant Strains of Escherichia coli. Applied Microbiology and Biotechnology, 102(2), 971-983. https://doi.org/10.1007/s00253-017-8591-z

Zhang, Z., Yu, F., Zou, Y., Qiu, Y., Wu, A., Jiang, T., & Peng, Y. (2020). Phage Protein Receptors Have Multiple Interaction Partners and High Expressions. Bioinformatics, 36(10), 2975–2979. https://doi.org/10.1093/bioinformatics/btaa123
Published
2021-08-21
Abstract viewed = 436 times
pdf downloaded = 933 times